PuSH - Publikationsserver des Helmholtz Zentrums München

Combining metabolomic non-targeted GC×GC-ToF-MS analysis and chemometric ASCA-based study of variances to assess dietary influence on type 2 diabetes development in a mouse model.

Anal. Bioanal. Chem. 407, 343-354 (2015)
Verlagsversion DOI PMC
Closed
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Insulin resistance (IR) lies at the origin of type 2 diabetes. It induces initial compensatory insulin secretion until insulin exhaustion and subsequent excessive levels of glucose (hyperglycemia). A high-calorie diet is a major risk factor contributing to the development of this metabolic disease. For this study, a time-course experiment was designed that consisted of two groups of mice. The aim of this design was to reproduce the dietary conditions that parallel the progress of IR over time. The first group was fed with a high-fatty-acid diet for several weeks and followed by 1 week of a low-fatty-acid intake, while the second group was fed with a low-fatty-acid diet during the entire experiment. The metabolomic fingerprint of C3HeB/FeJ mice liver tissue extracts was determined by means of two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-ToF-MS). This article addresses the application of ANOVA-simultaneous component analysis (ASCA) to the found metabolomic profile. By performing hyphenated high-throughput analytical techniques together with multivariate chemometric methodology on metabolomic analysis, it enables us to investigate the sources of variability in the data related to each experimental factor of the study design (defined as time, diet and individual). The contribution of the diet factor in the dissimilarities between the samples appeared to be predominant over the time factor contribution. Nevertheless, there is a significant contribution of the time-diet interaction factor. Thus, evaluating the influences of the factors separately, as it is done in classical statistical methods, may lead to inaccurate interpretation of the data, preventing achievement of consistent biological conclusions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.436
1.223
11
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Metabolomics; Chemometrics; Gas chromatography mass spectrometry; ANOVA-simulataneous component analysis (ASCA); Type II diabetes; Mouse model
Sprache englisch
Veröffentlichungsjahr 2015
Prepublished im Jahr 2014
HGF-Berichtsjahr 2014
ISSN (print) / ISBN 1618-2642
e-ISSN 1618-2650
Quellenangaben Band: 407, Heft: 1, Seiten: 343-354 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Heidelberg
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
90000 - German Center for Diabetes Research
Forschungsfeld(er) Environmental Sciences
Genetics and Epidemiology
PSP-Element(e) G-504500-001
G-500600-002
G-501900-062
G-504091-003
PubMed ID 25432303
Scopus ID 84926636219
Scopus ID 84912535749
Erfassungsdatum 2014-12-01