PuSH - Publikationsserver des Helmholtz Zentrums München

Rivas, M.A.* ; Pirinen, M.* ; Neville, M.J.* ; Gaulton, K.J.* ; Moutsianas, L.* ; GoT2D Consortium (Gieger, C. ; Grallert, H. ; Hrabě de Angelis, M. ; Huth, C. ; Kriebel, J. ; Meisinger, C. ; Meitinger, T. ; Müller-Nurasyid, M. ; Peters, A. ; Rathmann, W. ; Ried, J.S. ; Strauch, K. ; Donnelly, P.) ; Lindgren, C.M.* ; Karpe, F.* ; McCarthy, M.I.*

Assessing association between protein truncating variants and quantitative traits.

Bioinformatics 29, 2419-2426 (2013)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
MOTIVATION: In sequencing studies of common diseases and quantitative traits, power to test rare and low frequency variants individually is weak. To improve power, a common approach is to combine statistical evidence from several genetic variants in a region. Major challenges are how to do the combining and which statistical framework to use. General approaches for testing association between rare variants and quantitative traits include aggregating genotypes and trait values, referred to as 'collapsing', or using a score-based variance component test. However, little attention has been paid to alternative models tailored for protein truncating variants. Recent studies have highlighted the important role that protein truncating variants, commonly referred to as 'loss of function' variants, may have on disease susceptibility and quantitative levels of biomarkers. We propose a Bayesian modelling framework for the analysis of protein truncating variants and quantitative traits. RESULTS: Our simulation results show that our models have an advantage over the commonly used methods. We apply our models to sequence and exome-array data and discover strong evidence of association between low plasma triglyceride levels and protein truncating variants at APOC3 (Apolipoprotein C3). AVAILABILITY: Software is available from http://www.well.ox.ac.uk/~rivas/mamba
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
4.621
2.055
3
10
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2013
HGF-Berichtsjahr 2014
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 29, Heft: 19, Seiten: 2419-2426 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
30201 - Metabolic Health
30202 - Environmental Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504100-001
G-500700-001
G-500600-003
G-504091-002
G-504000-002
G-504000-006
PubMed ID 23860716
Erfassungsdatum 2014-12-31