PuSH - Publikationsserver des Helmholtz Zentrums München

Genetics of human metabolism: An update.

Hum. Mol. Genet. 24, R93-R101 (2015)
Postprint DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Genome-wide association studies with metabolomics (mGWAS) identify genetically influenced metabotypes (GIMs), their ensemble defining the heritable part of every human's metabolic individuality. Knowledge of genetic variation in metabolism has many applications of biomedical and pharmaceutical interest, including the functional understanding of genetic associations with clinical endpoints, design of strategies to correct dysregulations in metabolic disorders, and the identification of genetic effect modifiers of metabolic disease biomarkers. Furthermore, it has been shown that GIMs provide testable hypotheses for functional genomics and metabolomics and for the identification of novel gene functions and metabolite identities. mGWAS with growing sample sizes and increasingly complex metabolic trait panels are being conducted, allowing for more comprehensive and systems based downstream analyses. The generated large data sets of genetic associations can now be mined by the biomedical research community and provide valuable resources for hypothesis driven studies. In this review, we provide a brief summary of the key aspects of mGWAS, followed by an update of recently published mGWAS. We then discuss new approaches of integrating and exploring mGWAS results and finish by presenting selected applications of GIMs in recent studies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.393
1.477
54
84
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2015
HGF-Berichtsjahr 2015
ISSN (print) / ISBN 0964-6906
e-ISSN 1460-2083
Quellenangaben Band: 24, Heft: R1, Seiten: R93-R101 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Bioinformatics and Systems Biology (IBIS)
Institute of Epidemiology (EPI)
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
30202 - Environmental Health
90000 - German Center for Diabetes Research
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) G-503700-001
G-504091-004
G-501900-402
G-508400-007
PubMed ID 26160913
Scopus ID 84943807991
Erfassungsdatum 2015-07-12