The proteome of native adult Muller glial cells from murine retina.
Mol. Cell. Proteomics 15, 462-480 (2016)
To date, the proteomic profiling of Muller cells, the dominant macroglia of the retina, has been hampered due to the absence of suitable enrichment methods. We established a novel protocol to isolate native, intact Muller cells from adult murine retinae at excellent purity which retain in situ morphology and are well suited for proteomic analyses. Two different strategies of sample preparation, an in StageTips (iST) and a subcellular fractionation approach including cell surface protein profiling were used for quantitative LC MSMS comparing Muller cell enriched to depleted neuronal fractions. Pathway enrichment analyses on both datasets enabled us to identify Muller cell specific functions which included focal adhesion kinase signaling, signal transduction mediated by calcium as second messenger, transmembrane neurotransmitter transport and antioxidant activity. Pathways associated with RNA processing, cellular respiration and phototransduction were enriched in the neuronal subpopulation. Proteomic results were validated for selected Muller cell genes by quantitative RT-PCR, confirming the high expression levels of numerous members of the angiogenic and anti-inflammatory annexins and antioxidant enzymes (e.g. paraoxonase 2, peroxiredoxin 1, 4 and 6). Finally, the significant enrichment of antioxidant proteins in Muller cells was confirmed by measurements on vital retinal cells using the oxidative stress indicator CM-H2DCFDA. In contrast to photoreceptors or bipolar cells, Muller cells were most efficiently protected against H2O2-induced reactive oxygen species formation, which is in line with the protein repertoire identified in the proteomic profiling. Our novel approach to isolate intact glial cells from adult retina in combination with proteomic profiling enabled the identification of novel Muller glia specific proteins, which were validated as markers and for their functional impact in glial physiology. This provides the basis to allow the discovery of novel glial specializations and will enable us to elucidate the role of Muller cells in retinal pathologies, a topic still controversially discussed.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Assay Development ; Cell Fractionation* ; Central Nervous System ; Mass Spectrometry ; Oxidative Stress ; Quantification ; Surfaceome ; Annexins ; Radial Glia ; Retina; Oxygen-induced Retinopathy; Combined Transmembrane Topology; Signal Peptide Prediction; Label-free; Autoimmune Uveitis; Mass-spectrometry; Oxidative Stress; Mouse Retina; Rat Retina; Microglial Activation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2016
Prepublished im Jahr
2015
HGF-Berichtsjahr
2015
ISSN (print) / ISBN
1535-9476
e-ISSN
1535-9484
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 15,
Heft: 2,
Seiten: 462-480
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Society for Biochemistry and Molecular Biology
Verlagsort
Bethesda
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505700-001
Förderungen
Copyright
Erfassungsdatum
2015-09-03