Parallelization and high-performance computing enables automated statistical inference of multi-scale models.
Cell Syst. 4, 194–206.e9 (2017)
Mechanistic understanding of multi-scale biological processes, such as cell proliferation in a changing biological tissue, is readily facilitated by computational models. While tools exist to construct and simulate multi-scale models, the statistical inference of the unknown model parameters remains an open problem. Here, we present and benchmark a parallel approximate Bayesian computation sequential Monte Carlo (pABC SMC) algorithm, tailored for high-performance computing clusters. pABC SMC is fully automated and returns reliable parameter estimates and confidence intervals. By running the pABC SMC algorithm for ∼106 hr, we parameterize multi-scale models that accurately describe quantitative growth curves and histological data obtained in vivo from individual tumor spheroid growth in media droplets. The models capture the hybrid deterministic-stochastic behaviors of 105-106 of cells growing in a 3D dynamically changing nutrient environment. The pABC SMC algorithm reliably converges to a consistent set of parameters. Our study demonstrates a proof of principle for robust, data-driven modeling of multi-scale biological systems and the feasibility of multi-scale model parameterization through statistical inference. A new parallel approximate Bayesian computation sequential Monte Carlo (pABC SMC) algorithm allows for robust, data-driven modeling of multi-scale biological systems and demonstrates the feasibility of multi-scale model parameterization through statistical inference.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Approximate Bayesian Computation ; Bayesian Parameter Estimation ; High-performance Computing ; Model-based Data Integration ; Multi-scale Modeling ; Statistical Inference ; Tumor Spheroids; Approximate Bayesian Computation; Stochastic Simulation; Dynamical-systems; Monte-carlo; Cell; Predicts; Heterogeneity; Architecture; Environment; Integration
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2017
Prepublished im Jahr
2016
HGF-Berichtsjahr
2016
ISSN (print) / ISBN
2405-4712
e-ISSN
2405-4720
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 4,
Heft: 2,
Seiten: 194–206.e9
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Maryland Heights, MO
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
G-553800-001
Förderungen
Copyright
Erfassungsdatum
2016-12-31