Fast sparse recovery and coherence factor weighting in optoacoustic tomography.
    
    
        
    
    
        
        Proc. SPIE 10064:100642N (2017)
    
    
    
		
		
			
				Sparse recovery algorithms have shown great potential to reconstruct images with limited view datasets in optoacoustic tomography, with a disadvantage of being computational expensive. In this paper, we improve the fast convergent Split Augmented Lagrangian Shrinkage Algorithm (SALSA) method based on least square QR (LSQR) formulation for performing accelerated reconstructions. Further, coherence factor is calculated to weight the final reconstruction result, which can further reduce artifacts arising in limited-view scenarios and acoustically heterogeneous mediums. Several phantom and biological experiments indicate that the accelerated SALSA method with coherence factor (ASALSA-CF) can provide improved reconstructions and much faster convergence compared to existing sparse recovery methods.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Image Quality Enhancement ; Model-based Reconstruction ; Optoacoustic Tomography ; Sparse Recovery Method
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2017
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2017
    
 
    
    
        ISSN (print) / ISBN
        0277-786X
    
 
    
        e-ISSN
        1996-756X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        Photons Plus Ultrasound: Imaging and Sensing 2017
    
 
	
        Konferzenzdatum
        29 January - 1 February 2017
    
     
	
        Konferenzort
        San Francisco, California, United States
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 10064,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 100642N 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            SPIE
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-505500-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
        Erfassungsdatum
        2017-06-06