PuSH - Publikationsserver des Helmholtz Zentrums München

Magosi, L.E.* ; Goel, A.* ; Hopewell, J.C.* ; Farrall, M.* ; CARDIoGRAMplusC4D Consortium (Gieger, C. ; Peters, A. ; Meitinger, T.)

Identifying systematic heterogeneity patterns in genetic association meta-analysis studies.

PLoS Genet. 13:e1006755 (2017)
Verlagsversion Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
Progress in mapping loci associated with common complex diseases or quantitative inherited traits has been expedited by large-scale meta-analyses combining information across multiple studies, assembled through collaborative networks of researchers. Participating studies will usually have been independently designed and implemented in unique settings that are potential sources of phenotype, ancestry or other variability that could introduce between-study heterogeneity into a meta-analysis. Heterogeneity tests based on individual genetic variants (e.g. Q, I-2) are not suited to identifying locus-specific from more systematic multi-locus or genome-wide patterns of heterogeneity. We have developed and evaluated an aggregate heterogeneity M statistic that combines between-study heterogeneity information across multiple genetic variants, to reveal systematic patterns of heterogeneity that elude conventional single variant analysis. Application to a GWAS meta-analysis of coronary disease with 48 contributing studies uncovered substantial systematic between-study heterogeneity, which could be partly explained by age-of-disease onset, family-history of disease and ancestry. Future meta-analyses of diseases and traits with multiple known genetic associations can use this approach to identify outlier studies and thereby optimize power to detect novel genetic associations.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.100
1.523
12
13
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Genome-wide Association; Coronary-artery-disease; Meta-regression; China
Sprache englisch
Veröffentlichungsjahr 2017
HGF-Berichtsjahr 2017
ISSN (print) / ISBN 1553-7390
e-ISSN 1553-7404
Zeitschrift PLoS Genetics
Quellenangaben Band: 13, Heft: 5, Seiten: , Artikelnummer: e1006755 Supplement: ,
Verlag Public Library of Science (PLoS)
Verlagsort San Francisco
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
30501 - Systemic Analysis of Genetic and Environmental Factors that Impact Health
Forschungsfeld(er) Genetics and Epidemiology
PSP-Element(e) G-504000-001
G-500700-001
G-504100-001
G-504091-004
Scopus ID 85020214817
Erfassungsdatum 2017-07-07