PuSH - Publikationsserver des Helmholtz Zentrums München

Loos, C. ; Möller, K.* ; Fröhlich, F. ; Hucho, T.* ; Hasenauer, J.

A hierarchical, data-driven approach to modeling single-cell populations predicts latent causes of cell-to-cell variability.

Cell Syst. 6, 593-603.e13 (2018)
Verlagsversion Postprint Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
All biological systems exhibit cell-to-cell variability. Frameworks exist for understanding how stochastic fluctuations and transient differences in cell state contribute to experimentally observable variations in cellular responses. However, current methods do not allow identification of the sources of variability between and within stable subpopulations of cells. We present a data-driven modeling framework for the analysis of populations comprising heterogeneous subpopulations. Our approach combines mixture modeling with frameworks for distribution approximation, facilitating the integration of multiple single-cell datasets and the detection of causal differences between and within subpopulations. The computational efficiency of our framework allows hundreds of competing hypotheses to be compared. We initially validate our method using simulated data with an understood ground truth, then we analyze data collected using quantitative single-cell microscopy of cultured sensory neurons involved in pain initiation. This approach allows us to quantify the relative contribution of neuronal subpopulations, culture conditions, and expression levels of signaling proteins to the observed cell-to-cell variability in NGF/TrkA-initiated Erk1/2 signaling. Loos et al. introduce a data-driven modeling framework for the mechanistic analysis of heterogeneous cell populations consisting of subpopulations. Applying the framework to single-cell microscopy data of primary sensory neurons, they analyze the influence of extracellular scaffolds onto sensitization signaling.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
8.982
1.915
15
20
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Heterogeneity ; Mixture Modeling ; Pain Sensitization ; Single-cell Data ; Statistical Inference ; Systems Biology
Sprache
Veröffentlichungsjahr 2018
HGF-Berichtsjahr 2018
ISSN (print) / ISBN 2405-4712
e-ISSN 2405-4720
Zeitschrift Cell Systems
Quellenangaben Band: 6, Heft: 5, Seiten: 593-603.e13 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Maryland Heights, MO
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-553800-001
Scopus ID 85046341029
PubMed ID 29730254
Erfassungsdatum 2018-05-08