Wallach, D.* ; Martre, P.* ; Liu, B.* ; Asseng, S.* ; Ewert, F.* ; Thorburn, P.J.* ; van Ittersum, M.* ; Aggarwal, P.K.* ; Ahmed, M.* ; Basso, B.* ; Biernath, C.J. ; Cammarano, D.* ; Challinor, A.J.* ; de Sanctis, G.* ; Dumont, B.* ; Eyshi Rezaei, E.* ; Fereres, E.* ; Fitzgerald, G.J.* ; Gao, Y.* ; Garcia-Vila, M.* ; Gayler, S.* ; Girousse, C.* ; Hoogenboom, G.* ; Horan, H.* ; Izaurralde, R.C.* ; Jones, C.D.* ; Kassie, B.T.* ; Kersebaum, K.C.* ; Klein, C. ; Koehler, A.-K.* ; Maiorano, A.* ; Minoli, S.* ; Müller, C.* ; Naresh Kumar, S.* ; Nendel, C.* ; O'Leary, G.J.* ; Palosuo, T.* ; Priesack, E. ; Ripoche, D.* ; Rötter, R.P.* ; Semenov, M.A.* ; Stöckle, C.* ; Stratonovitch, P.* ; Streck,T.* ; Supit, I.* ; Tao, F.* ; Wolf, J.* ; Zhang, Z.*
Multimodel ensembles improve predictions of crop-environment-management interactions.
Glob. Change Biol. 24, 5072-5083 (2018)
A recent innovation in assessment of climate change impact on agricultural production has been to use crop multimodel ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e-mean) and median (e-median) often seem to predict quite well. However, few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e-mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical results describe the ensemble using four parameters: average bias, model effect variance, environment effect variance, and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e-mean will always be smaller than MSEP averaged over models and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Climate Change Impact ; Crop Models ; Ensemble Mean ; Ensemble Median ; Multimodel Ensemble ; Prediction; Climate-change; Models; Wheat; Yield; Uncertainty; Europe; Skill
Keywords plus
Sprache
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
1354-1013
e-ISSN
1365-2486
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 24,
Heft: 11,
Seiten: 5072-5083
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504912-001
Förderungen
Copyright
Erfassungsdatum
2018-07-31