Speciation of nano and ionic form of silver with capillary electrophoresis-inductively coupled plasma mass spectrometry.
J. Chromatogr. A 1572, 162-171 (2018)
Research in the area of new nanomaterials has been given high priority as having an enormous economic potential. Due to marked antimicrobial effect, silver nanoparticles (AgNPs) are one of the most commercialized and successfully exploited nanomaterials in a wide range of medical and consumer products.In biological and environmental compartments, AgNPs undergo different transformations including interaction with organic molecules, such as proteins, and dissolution. Hyphenated systems consisting of capillary electrophoresis (CE) coupled to sensitive element detection like ICP-MS can be considered as the promising methods for speciation analysis of AgNPs. Here, we investigated applicability of different CE methods hyphenated to ICP-MS for speciation of AgNPs in biological systems.The paper presents approach to analyze species formed in interaction of AgNPs with metallothionein (MT) as model protein. As AgNPs might be coated by MTs in bio-fiuids, we installed first a CE-speciation method for MT-1 and MT-2. Although this separation was successful, no reproducible and well separated peaks for AgNPs or Ag* were achieved. Therefore, we focused on developing methods for separating MT-1, MT-2, Ag* and AgNPs. Several buffer conditions were tested to improve their separation and to minimize Ag-sticking to capillary walls. All compounds of interest in this paper, i.e. MT-1, MT-2, Ag+ and AgNPs, were well separated from each other using tetramethyl-ammoniumhydroxide as electrolyte. In mixed samples, we observed Ag+ being completely associated with MT-1, while Ag*-association with MT-2 was less: The highest quantity of Ag* was associated with a compound having low Cd-concentration, while another relevant fraction was bound to MT-2. Free Ag* was also seen in minor amounts whereas another Ag-peak at 8.13 min remains unknown. Most AgNPs remained free. AgNPs were only little associated with MT-1, the latter being split into two peak signals, whereas association with MT-2 was high. Only 15% of AgNPs remained unbound.We demonstrated CE hyphenated to the ICP-MS as promising and elegant technique to study AgNPs in biological systems. (C) 2018 Elsevier B.V. All rights reserved.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Silver Nanoparticles ; Ionic Silver ; Agnp Characterization ; Ce-icp-ms ; Biological Fate ; Metallothionein Interaction; Field Flow Fractionation; Cloud Point Extraction; Icp-ms; Biological Environment; Size Characterization; Dietary-supplements; Escherichia-coli; Release Kinetics; Nanoparticles; Separation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0021-9673
e-ISSN
1873-3778
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 1572,
Heft: ,
Seiten: 162-171
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Po Box 211, 1000 Ae Amsterdam, Netherlands
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504800-002
Förderungen
Copyright
Erfassungsdatum
2018-09-18