Organic sulfur fingerprint indicates continued injection fluid signature 10 months after hydraulic fracturing.
Environ. Sci. Process Impacts 21, 206-213 (2019)
Hydraulic fracturing requires the injection of large volumes of fluid to extract oil and gas from low permeability unconventional resources (e.g., shale, coalbed methane), resulting in the production of large volumes of highly complex and variable waste fluids. Shale gas fluid samples were collected from two hydraulically fractured wells in Morgantown, WV, USA at the Marcellus Shale Energy and Environment Laboratory (MSEEL) and analyzed using ultrahigh resolution mass spectrometry to investigate the dissolved organic sulfur (DOS) pool. Using a non-targeted approach, ions assigned DOS formulas were analyzed to identify dominant DOS classes, describe their temporal trends and their implications, and describe the molecular characteristics of the larger DOS pool. The average molecular weight of organic sulfur compounds in flowback decreased and was lowest in produced waters. The dominant DOS classes were putatively assigned to alcohol sulfate and alcohol ethoxysulfate surfactants, likely injected as fracturing fluid additives, on the basis of exact mass and homolog distribution matching. This DOS signature was identifiable 10 months after the initial injection of hydraulic fracturing fluid, and an absence of genes that code for alcohol ethoxysulfate degrading proteins (e.g., sulfatases) in the shale well genomes and metagenomes support that these additives are not readily degraded biologically and may continue to act as a chemical signature of the injected fluid. Understanding the diversity, lability, and fate of organic sulfur compounds in shale wells is important for engineering productive wells and preventing gas souring as well as understanding the consequences of unintended fluid release to the environment. The diversity of DOS, particularly more polar compounds, needs further investigation to determine if the identified characteristics and temporal patterns are unique to the analyzed wells or represent broader patterns found in other formations and under other operating conditions.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Resonance Mass-spectrometry; Linear Alkylbenzene Sulfonates; Electrospray-ionization; Temporal Characterization; Unconventional Oil; Hydrogen-sulfide; Scale Formation; Water; Matter; Sulfate
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
2018
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
2050-7887
e-ISSN
2050-7895
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 21,
Heft: 2,
Seiten: 206-213
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Royal Society of Chemistry (RSC)
Verlagsort
Cambridge
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Environmental Sciences
PSP-Element(e)
G-504800-001
Förderungen
Copyright
Erfassungsdatum
2018-10-23