Nonlinear association structures in flexible Bayesian additive joint models.
Stat. Med. 37, 4771-4788 (2018)
Joint models of longitudinal and survival data have become an important tool for modeling associations between longitudinal biomarkers and event processes. The association between marker and log hazard is assumed to be linear in existing shared random effects models, with this assumption usually remaining unchecked. We present an extended framework of flexible additive joint models that allows the estimation of nonlinear covariate specific associations by making use of Bayesian P-splines. Our joint models are estimated in a Bayesian framework using structured additive predictors for all model components, allowing for great flexibility in the specification of smooth nonlinear, time-varying, and random effects terms for longitudinal submodel, survival submodel, and their association. The ability to capture truly linear and nonlinear associations is assessed in simulations and illustrated on the widely studied biomedical data on the rare fatal liver disease primary biliary cirrhosis. All methods are implemented in the R package bamlss to facilitate the application of this flexible joint model in practice.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Joint Model ; Longitudinal Data ; Nonlinear Association ; P-splines ; Time-to-event Data; To-event Data; Survival-data; R Package; Regression; Splines; Predictions
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2018
Prepublished im Jahr
HGF-Berichtsjahr
2018
ISSN (print) / ISBN
0277-6715
e-ISSN
1097-0258
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 37,
Heft: 30,
Seiten: 4771-4788
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30201 - Metabolic Health
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502100-001
Förderungen
Copyright
Erfassungsdatum
2018-10-25