PuSH - Publikationsserver des Helmholtz Zentrums München

Fischer, D.S. ; Fiedler, A. ; Kernfeld, E.M.* ; Genga, R.M.J.* ; Bastidas-Ponce, A. ; Bakhti, M. ; Lickert, H. ; Hasenauer, J. ; Maehr, R.* ; Theis, F.J.

Inferring population dynamics from single-cell RNA-sequencing time series data.

Nat. Biotechnol. 37, 461-468 (2019)
Postprint DOI PMC
Open Access Green
Recent single-cell RNA-sequencing studies have suggested that cells follow continuous transcriptomic trajectories in an asynchronous fashion during development. However, observations of cell flux along trajectories are confounded with population size effects in snapshot experiments and are therefore hard to interpret. In particular, changes in proliferation and death rates can be mistaken for cell flux. Here we present pseudodynamics, a mathematical framework that reconciles population dynamics with the concepts underlying developmental trajectories inferred from time-series single-cell data. Pseudodynamics models population distribution shifts across trajectories to quantify selection pressure, population expansion, and developmental potentials. Applying this model to time-resolved single-cell RNA-sequencing of T-cell and pancreatic beta cell maturation, we characterize proliferation and apoptosis rates and identify key developmental checkpoints, data inaccessible to existing approaches.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
31.864
5.728
38
47
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Parameter-estimation; Gene-expression; Beta-cells; Identification; Islets; Fate
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1087-0156
e-ISSN 1546-1696
Zeitschrift Nature Biotechnology
Quellenangaben Band: 37, Heft: 4, Seiten: 461-468 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Verlagsort New York, NY
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
90000 - German Center for Diabetes Research
30201 - Metabolic Health
Forschungsfeld(er) Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e) G-503800-001
G-553800-001
G-501900-231
G-502300-001
Scopus ID 85063739999
PubMed ID 30936567
Erfassungsdatum 2019-04-11