Thiel, D.* ; Conrad, N.D.* ; Ntini, E.* ; Peschutter, R.X.* ; Siebert, H.* ; Marsico, A.
Identifying lncRNA-mediated regulatory modules via ChIA-PET network analysis.
BMC Bioinformatics 20:292 (2019)
Background: Although several studies have provided insights into the role of long non-coding RNAs (lncRNAs), the majority of them have unknown function. Recent evidence has shown the importance of both lncRNAs and chromatin interactions in transcriptional regulation. Although network-based methods, mainly exploiting gene-lncRNA co-expression, have been applied to characterize lncRNA of unknown function by means of 'guilt-by-association', no strategy exists so far which identifies mRNA-lncRNA functional modules based on the 3D chromatin interaction graph. Results: To better understand the function of chromatin interactions in the context of lncRNA-mediated gene regulation, we have developed a multi-step graph analysis approach to examine the RNA polymerase II ChIA-PET chromatin interaction network in the K562 human cell line. We have annotated the network with gene and lncRNA coordinates, and chromatin states from the ENCODE project. We used centrality measures, as well as an adaptation of our previously developed Markov State Models (MSM) clustering method, to gain a better understanding of lncRNAs in transcriptional regulation. The novelty of our approach resides in the detection of fuzzy regulatory modules based on network properties and their optimization based on co-expression analysis between genes and gene-lncRNA pairs. This results in our method returning more bona fide regulatory modules than other state-of-the art approaches for clustering on graphs. Conclusions: Interestingly, we find that lncRNA network hubs tend to be significantly enriched in evolutionary conserved lncRNAs and enhancer-like functions. We validated regulatory functions for well known lncRNAs, such as MALAT1 and the enhancer-like lncRNA FALEC. In addition, by investigating the modular structure of bigger components we mine putative regulatory functions for uncharacterized lncRNAs.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Chia-pet ; Gene Regulation ; Lncrna ; Modules ; Network Analysis; Long Noncoding Rnas; Chromatin-state; Cell; Transcription; Expression; Prediction; Enhancers; Sequences; Genomics; Lincrnas
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2019
Prepublished im Jahr
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
1471-2105
e-ISSN
1471-2105
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 20,
Heft: 1,
Seiten: ,
Artikelnummer: 292
Supplement: ,
Reihe
Verlag
BioMed Central
Verlagsort
Campus, 4 Crinan St, London N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Copyright
Erfassungsdatum
2019-06-05