PuSH - Publikationsserver des Helmholtz Zentrums München

Current best practices in single-cell RNA-seq analysis: A tutorial.

Mol. Syst. Biol. 15:e8746 (2019)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Single-cell RNA-seq has enabled gene expression to be studied at an unprecedented resolution. The promise of this technology is attracting a growing user base for single-cell analysis methods. As more analysis tools are becoming available, it is becoming increasingly difficult to navigate this landscape and produce an up-to-date workflow to analyse one's data. Here, we detail the steps of a typical single-cell RNA-seq analysis, including pre-processing (quality control, normalization, data correction, feature selection, and dimensionality reduction) and cell- and gene-level downstream analysis. We formulate current best-practice recommendations for these steps based on independent comparison studies. We have integrated these best-practice recommendations into a workflow, which we apply to a public dataset to further illustrate how these steps work in practice. Our documented case study can be found at . This review will serve as a workflow tutorial for new entrants into the field, and help established users update their analysis pipelines.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
9.800
1.879
372
624
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Analysis Pipeline Development ; Computational Biology ; Data Analysis Tutorial ; Single-cell Rna-seq; Gene-expression; Sequencing Data; Regulatory Network; Heterogeneity; Visualization; Tool; Normalization; Extraction; Definition; Programs
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1744-4292
e-ISSN 1744-4292
Quellenangaben Band: 15, Heft: 6, Seiten: , Artikelnummer: e8746 Supplement: ,
Verlag EMBO Press
Verlagsort 111 River St, Hoboken 07030-5774, Nj Usa
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-503800-003
Scopus ID 85067863532
PubMed ID 31217225
Erfassungsdatum 2019-06-27