Strengthening causal inference for complex disease using molecular quantitative trait loci.
Trends Mol. Med. 26, 232-241 (2020)
Large genome-wide association studies (GWAS) have identified loci that are associated with complex traits and diseases, but index variants are often not causal and reside in non-coding regions of the genome. To gain a better understanding of the relevant biological mechanisms, in termediate traits such as gene expression and protein levels are increasingly being investigated because these are likely mediators between genetic variants and disease outcome. Genetic variants associated with intermediate traits, termed molecular quantitative trait loci (molQTLs), car then be used as instrumental variables in a Mendelian randomization (MR) approach to identify the causal features and mechanisms of complex traits. Challenges such as pleiotropy and the non-specificity of molQTLs remain, and further approaches and methods need to be developed.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Complex Trait ; Gene Expression ; Genome-wide Association Study ; Gwas ; Mendelian Randomization ; Qtl; Mendelian Randomization; Gene-expression; Association; Identification; Epidemiology; Variants; Atlas; Gwas; Help; Bias
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
2019
HGF-Berichtsjahr
2019
ISSN (print) / ISBN
1471-4914
e-ISSN
1471-499X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 26,
Heft: 2,
Seiten: 232-241
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Translational Genomics (ITG)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-506700-001
Förderungen
Copyright
Erfassungsdatum
2019-11-26