PuSH - Publikationsserver des Helmholtz Zentrums München

Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data.

Bioinformatics 36, 4291-4295 (2020)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
MOTIVATION: Dimensionality reduction is a key step in the analysis of single-cell RNA-sequencing data. It produces a low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear techniques are most suitable to handle the intrinsic complexity of large, heterogeneous single-cell data. However, with no linear relation between gene and embedding coordinate, there is no way to extract the identity of genes driving any cell's position in the low-dimensional embedding, making it difficult to characterize the underlying biological processes. RESULTS: In this article, we introduce the concepts of local and global gene relevance to compute an equivalent of principal component analysis loadings for non-linear low-dimensional embeddings. Global gene relevance identifies drivers of the overall embedding, while local gene relevance identifies those of a defined sub-region. We apply our method to single-cell RNA-seq datasets from different experimental protocols and to different low-dimensional embedding techniques. This shows our method's versatility to identify key genes for a variety of biological processes. AVAILABILITY AND IMPLEMENTATION: To ensure reproducibility and ease of use, our method is released as part of destiny 3.0, a popular R package for building diffusion maps from single-cell transcriptomic data. It is readily available through Bioconductor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.610
1.813
1
2
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Diffusion Maps; Expression; Reveals
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 36, Heft: 15, Seiten: 4291-4295 Artikelnummer: , Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30204 - Cell Programming and Repair
Forschungsfeld(er) Enabling and Novel Technologies
Stem Cell and Neuroscience
PSP-Element(e) G-503800-001
G-506290-001
Förderungen DFG
Joachim Herz Stiftung
German research foundation (DFG) fellowship through the Graduate School of Quantitative Biosciences Munich (QBM)
Scopus ID 85091808769
PubMed ID 32207520
Erfassungsdatum 2020-04-02