Haugg, A.* ; Sladky, R.* ; Skouras, S.* ; McDonald, A.* ; Craddock, C.* ; Kirschner, M.* ; Herdener, M.* ; Koush, Y.* ; Papoutsi, M.* ; Keynan, J.N.* ; Hendler, T.* ; Cohen Kadosh, K.* ; Zich, C.* ; MacInnes, J.* ; Adcock, A.* ; Dickerson, K.* ; Chen, N.K.* ; Young, K.* ; Bodurka, J.* ; Yao, S.* ; Becker, B.* ; Auer, T.* ; Schweizer, R.* ; Pamplona, G.* ; Emmert, K.* ; Haller, S.* ; van de Ville, D.* ; Blefari, M.L.* ; Kim, D.Y.* ; Lee, J.H.* ; Marins, T.* ; Fukuda, M.* ; Sorger, B.* ; Kamp, T.* ; Liew, S.L.* ; Veit, R. ; Spetter, M.* ; Weiskopf, N.* ; Scharnowski, F.*
Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity?
Hum. Brain Mapp. 41, 3839-3854 (2020)
Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Fmri ; Functional Neuroimaging ; Learning ; Meta-analysis ; Neurofeedback ; Real-time Fmri; Time Fmri Neurofeedback; Anterior Cingulate Cortex; Down-regulation; Self-regulation; Connectivity; Reduction; Networks; Pain; Modulation; Activation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2020
Prepublished im Jahr
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
1065-9471
e-ISSN
1097-0193
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 41,
Heft: 14,
Seiten: 3839-3854
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Wiley
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502400-001
Förderungen
Copyright
Erfassungsdatum
2020-10-07