Light sheet fluorescence microscopy (LSFM) of optically cleared biological samples represents a powerful tool to analyze the 3-dimensional morphology of tissues and organs. Multimodal combinations of LSFM with additional analyses of the identical sample help to limit the consumption of restricted specimen and reduce inter-sample variation. Here, we demonstrate the proof-of-concept that LSFM of cleared brain tissue samples can be combined with Matrix Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging (MALDI-MSI) for detection and quantification of proteins. Samples of freshly dissected murine brain and of archived formalin-fixed paraffin-embedded (FFPE) human brain tissue were cleared (3DISCO). Tissue regions of interest were defined by LSFM and excised, (re)-embedded in paraffin, and sectioned. Mouse sections were coated with sinapinic acid matrix. Human brain sections were pre-digested with trypsin and coated with α-cyano-4-hydroxycinnamic acid matrix. Subsequently, sections were subjected to MALDI-time-of-flight (TOF)-MSI in mass ranges between 0.8 to 4 kDa (human tissue sections), or 2.5–25 kDa (mouse tissue sections) with a lateral resolution of 50 µm. Protein- and peptide-identities corresponding to acquired MALDI-MSI spectra were confirmed by parallel liquid chromatography tandem mass spectrometry (LC–MS/MS) analysis. The spatial abundance- and intensity-patterns of established marker proteins detected by MALDI-MSI were also confirmed by immunohistochemistry.
Impact Factor
Scopus SNIP
Web of Science Times Cited
Scopus Cited By
Altmetric
3.998
1.365
3
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
PublikationstypArtikel: Journalartikel
DokumenttypWissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
SchlagwörterCurrent Frontiers; Specimens; Proteins; Pathology; Proteome; Disease; Model
POF Topic(s)30205 - Bioengineering and Digital Health 30505 - New Technologies for Biomedical Discoveries 30201 - Metabolic Health 30203 - Molecular Targets and Therapies
Forschungsfeld(er)Enabling and Novel Technologies Genetics and Epidemiology Helmholtz Diabetes Center