Bayesian inference for diffusion processes: Using higher-order approximations for transition densities.
    
    
        
    
    
        
        R. Soc. Open Sci. 7:200270 (2020)
    
    
    
		
		
			
				Modelling random dynamical systems in continuous time, diffusion processes are a powerful tool in many areas of science. Model parameters can be estimated from time-discretely observed processes using Markov chain Monte Carlo (MCMC) methods that introduce auxiliary data. These methods typically approximate the transition densities of the process numerically, both for calculating the posterior densities and proposing auxiliary data. Here, the Euler-Maruyama scheme is the standard approximation technique. However, the MCMC method is computationally expensive. Using higher-order approximations may accelerate it, but the specific implementation and benefit remain unclear. Hence, we investigate the utilization and usefulness of higher-order approximations in the example of the Milstein scheme. Our study demonstrates that the MCMC methods based on the Milstein approximation yield good estimation results. However, they are computationally more expensive and can be applied to multidimensional processes only with impractical restrictions. Moreover, the combination of the Milstein approximation and the well-known modified bridge proposal introduces additional numerical challenges.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Bayesian Data Imputation ; Markov Chain Monte Carlo ; Milstein Scheme ; Parameter Estimation ; Stochastic Differential Equations
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2020
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2020
    
 
    
    
        ISSN (print) / ISBN
        2054-5703
    
 
    
        e-ISSN
        2054-5703
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 7,  
	    Heft: 10,  
	    Seiten: ,  
	    Artikelnummer: 200270 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Royal Society of London
        
 
        
            Verlagsort
            
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503800-001
    
 
    
        Förderungen
        Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
    
 
    
        Copyright
        
    
 	
    
    
    
    
        Erfassungsdatum
        2020-11-27