PuSH - Publikationsserver des Helmholtz Zentrums München

stochprofML: Stochastic profiling using maximum likelihood estimation in R.

BMC Bioinformatics 22:123 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background: Tissues are often heterogeneous in their single-cell molecular expression, and this can govern the regulation of cell fate. For the understanding of development and disease, it is important to quantify heterogeneity in a given tissue. Results: We present the R package stochprofML which uses the maximum likelihood principle to parameterize heterogeneity from the cumulative expression of small random pools of cells. We evaluate the algorithm’s performance in simulation studies and present further application opportunities. Conclusion: Stochastic profiling outweighs the necessary demixing of mixed samples with a saving in experimental cost and effort and less measurement error. It offers possibilities for parameterizing heterogeneity, estimating underlying pool compositions and detecting differences between cell populations between samples.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.169
1.276
1
1
Tags
Icb_biostatistics
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Cell-to-cell Heterogeneity ; Deconvolution ; Gene Expression ; Maximum Likelihood Estimation ; Mixture Models ; R ; Stochastic Profiling ; Stochprofml
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1471-2105
e-ISSN 1471-2105
Zeitschrift BMC Bioinformatics
Quellenangaben Band: 22, Heft: 1, Seiten: , Artikelnummer: 123 Supplement: ,
Verlag BioMed Central
Verlagsort Campus, 4 Crinan St, London N1 9xw, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Foundation for the National Institutes of Health
Helmholtz Initiating and Networking Funds

Deutsche Forschungsgemeinschaft
Scopus ID 85102581255
PubMed ID 33722188
Erfassungsdatum 2021-05-18