PuSH - Publikationsserver des Helmholtz Zentrums München

Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data.

Sci. Rep. 11:6806 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Constantly decreasing costs of high-throughput profiling on many molecular levels generate vast amounts of multi-omics data. Studying one biomedical question on two or more omic levels provides deeper insights into underlying molecular processes or disease pathophysiology. For the majority of multi-omics data projects, the data analysis is performed level-wise, followed by a combined interpretation of results. Hence the full potential of integrated data analysis is not leveraged yet, presumably due to the complexity of the data and the lacking toolsets. We propose a versatile approach, to perform a multi-level fully integrated analysis: The Knowledge guIded Multi-Omics Network inference approach, KiMONo ( https://github.com/cellmapslab/kimono ). KiMONo performs network inference by using statistical models for combining omics measurements coupled to a powerful knowledge-guided strategy exploiting prior information from existing biological sources. Within the resulting multimodal network, nodes represent features of all input types e.g. variants and genes while edges refer to knowledge-supported and statistically derived associations. In a comprehensive evaluation, we show that our method is robust to noise and exemplify the general applicability to the full spectrum of multi-omics data, demonstrating that KiMONo is a powerful approach towards leveraging the full potential of data sets for detecting biomarker candidates.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
4.379
1.377
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2045-2322
e-ISSN 2045-2322
Zeitschrift Scientific Reports
Quellenangaben Band: 11, Heft: 1, Seiten: , Artikelnummer: 6806 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Bundesministerium für Bildung und Forschung
Scopus ID 85103346371
PubMed ID 33762588
Erfassungsdatum 2021-05-20