Kellerer, C.* ; Jörres, R.A.* ; Schneider, A.* ; Alter, P.* ; Kauczor, H.U.* ; Jobst, B.* ; Biederer, J.* ; Bals, R.* ; Watz, H.* ; Behr, J.* ; Kauffmann-Guerrero, D.* ; Lutter, J. ; Hapfelmeier, A.* ; Magnussen, H.* ; Trudzinski, F.C.* ; Welte, T.* ; Vogelmeier, C.F.* ; Kahnert, K.*
Prediction of lung emphysema in COPD by spirometry and clinical symptoms: Results from COSYCONET.
Respir. Res. 22:242 (2021)
Background: Lung emphysema is an important phenotype of chronic obstructive pulmonary disease (COPD), and CT scanning is strongly recommended to establish the diagnosis. This study aimed to identify criteria by which physicians with limited technical resources can improve the diagnosis of emphysema. Methods: We studied 436 COPD patients with prospective CT scans from the COSYCONET cohort. All items of the COPD Assessment Test (CAT) and the St George’s Respiratory Questionnaire (SGRQ), the modified Medical Research Council (mMRC) scale, as well as data from spirometry and CO diffusing capacity, were used to construct binary decision trees. The importance of parameters was checked by the Random Forest and AdaBoost machine learning algorithms. Results: When relying on questionnaires only, items CAT 1 & 7 and SGRQ 8 & 12 sub-item 3 were most important for the emphysema- versus airway-dominated phenotype, and among the spirometric measures FEV1/FVC. The combination of CAT item 1 (≤ 2) with mMRC (> 1) and FEV1/FVC, could raise the odds for emphysema by factor 7.7. About 50% of patients showed combinations of values that did not markedly alter the likelihood for the phenotypes, and these could be easily identified in the trees. Inclusion of CO diffusing capacity revealed the transfer coefficient as dominant measure. The results of machine learning were consistent with those of the single trees. Conclusions: Selected items (cough, sleep, breathlessness, chest condition, slow walking) from comprehensive COPD questionnaires in combination with FEV1/FVC could raise or lower the likelihood for lung emphysema in patients with COPD. The simple, parsimonious approach proposed by us might help if diagnostic resources regarding respiratory diseases are limited. Trial registration ClinicalTrials.gov, Identifier: NCT01245933, registered 18 November 2010, https://clinicaltrials.gov/ct2/show/record/NCT01245933.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Adaboost ; Copd Phenotypes ; Ct Scan ; Decision Trees ; Emphysema ; Random Forest; Population; Disease
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1465-9921
e-ISSN
1465-993X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 22,
Heft: 1,
Seiten: ,
Artikelnummer: 242
Supplement: ,
Reihe
Verlag
BioMed Central
Verlagsort
Campus, 4 Crinan St, London N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-505300-001
Förderungen
Projekt DEAL
German Centre for Lung Research (DZL)
BMBF
AstraZeneca GmbH
Chiesi GmbH
GlaxoSmithKline GmbHCo. KG
Grifols Deutschland GmbH
Novartis Deutschland GmbH
Copyright
Erfassungsdatum
2021-10-11