Villaverde, A.F.* ; Pathirana, D.* ; Fröhlich, F. ; Hasenauer, J.* ; Banga, J.R.*
A protocol for dynamic model calibration.
Brief. Bioinform. 23:bbab387 (2022)
Ordinary differential equation models are nowadays widely used for the mechanistic description of biological processes and their temporal evolution. These models typically have many unknown and nonmeasurable parameters, which have to be determined by fitting the model to experimental data. In order to perform this task, known as parameter estimation or model calibration, the modeller faces challenges such as poor parameter identifiability, lack of sufficiently informative experimental data and the existence of local minima in the objective function landscape. These issues tend to worsen with larger model sizes, increasing the computational complexity and the number of unknown parameters. An incorrectly calibrated model is problematic because it may result in inaccurate predictions and misleading conclusions. For nonexpert users, there are a large number of potential pitfalls. Here, we provide a protocol that guides the user through all the steps involved in the calibration of dynamic models. We illustrate the methodology with two models and provide all the code required to reproduce the results and perform the same analysis on new models. Our protocol provides practitioners and researchers in biological modelling with a one-stop guide that is at the same time compact and sufficiently comprehensive to cover all aspects of the problem.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Dynamic Modelling ; Identifiability ; Identification ; Optimization ; Parameter Estimation ; Systems Biology
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
2021
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1467-5463
e-ISSN
1477-4054
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 23,
Heft: 1,
Seiten: ,
Artikelnummer: bbab387
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553800-001
Förderungen
Ministerio de Ciencia e Innovación
Ramón y Cajal Fellowship
Copyright
Erfassungsdatum
2021-10-27