PuSH - Publikationsserver des Helmholtz Zentrums München

Schmid, K. ; Höllbacher, B. ; Cruceanu, C.* ; Böttcher, A. ; Lickert, H. ; Binder, E.B.* ; Theis, F.J. ; Heinig, M.

scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies.

Nat. Commun. 12:6625 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Single cell RNA-seq has revolutionized transcriptomics by providing cell type resolution for differential gene expression and expression quantitative trait loci (eQTL) analyses. However, efficient power analysis methods for single cell data and inter-individual comparisons are lacking. Here, we present scPower; a statistical framework for the design and power analysis of multi-sample single cell transcriptomic experiments. We modelled the relationship between sample size, the number of cells per individual, sequencing depth, and the power of detecting differentially expressed genes within cell types. We systematically evaluated these optimal parameter combinations for several single cell profiling platforms, and generated broad recommendations. In general, shallow sequencing of high numbers of cells leads to higher overall power than deep sequencing of fewer cells. The model, including priors, is implemented as an R package and is accessible as a web tool. scPower is a highly customizable tool that experimentalists can use to quickly compare a multitude of experimental designs and optimize for a limited budget.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
14.919
3.055
2
11
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Differential Expression Analysis; Sample-size; Rna-seq; Power Analysis; Discovery; Signatures; Count
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 12, Heft: 1, Seiten: , Artikelnummer: 6625 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30201 - Metabolic Health
Forschungsfeld(er) Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e) G-553500-001
G-503800-001
G-502300-001
Förderungen Projekt DEAL
Scopus ID 85119098978
PubMed ID 34785648
Erfassungsdatum 2021-12-03