Han, S. ; Huang, J. ; Foppiano, F. ; Prehn, C. ; Adamski, J.* ; Suhre, K.* ; Li, Y.* ; Matullo, G.* ; Schliess, F.* ; Gieger, C. ; Peters, A. ; Wang-Sattler, R.
TIGER: Technical variation elimination for metabolomics data using ensemble learning architecture.
Brief. Bioinform. 23:bbab535 (2022)
Large metabolomics datasets inevitably contain unwanted technical variations which can obscure meaningful biological signals and affect how this information is applied to personalized healthcare. Many methods have been developed to handle unwanted variations. However, the underlying assumptions of many existing methods only hold for a few specific scenarios. Some tools remove technical variations with models trained on quality control (QC) samples which may not generalize well on subject samples. Additionally, almost none of the existing methods supports datasets with multiple types of QC samples, which greatly limits their performance and flexibility. To address these issues, a non-parametric method TIGER (Technical variation elImination with ensemble learninG architEctuRe) is developed in this study and released as an R package (https://CRAN.R-project.org/package=TIGERr). TIGER integrates the random forest algorithm into an adaptable ensemble learning architecture. Evaluation results show that TIGER outperforms four popular methods with respect to robustness and reliability on three human cohort datasets constructed with targeted or untargeted metabolomics data. Additionally, a case study aiming to identify age-associated metabolites is performed to illustrate how TIGER can be used for cross-kit adjustment in a longitudinal analysis with experimental data of three time-points generated by different analytical kits. A dynamic website is developed to help evaluate the performance of TIGER and examine the patterns revealed in our longitudinal analysis (https://han-siyu.github.io/TIGER_web/). Overall, TIGER is expected to be a powerful tool for metabolomics data analysis.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Ensemble Learning ; Longitudinal Analysis ; Machine Learning ; Metabolomics ; Predictive Modelling
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1467-5463
e-ISSN
1477-4054
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 23,
Heft: 2,
Seiten: ,
Artikelnummer: bbab535
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30205 - Bioengineering and Digital Health
30505 - New Technologies for Biomedical Discoveries
Forschungsfeld(er)
Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e)
G-504091-003
G-506700-001
A-630710-001
G-504091-004
G-504000-010
Förderungen
Ministry of Education
Copyright
Erfassungsdatum
2022-02-08