PuSH - Publikationsserver des Helmholtz Zentrums München

Ramm, E.* ; Liu, C.* ; Ambus, P.* ; Butterbach-Bahl, K.* ; Hu, B.* ; Martikainen, P.J.* ; Marushchak, M.E.* ; Mueller, C.W.* ; Rennenberg, H.* ; Schloter, M. ; Siljanen, H.M.P.* ; Voigt, C.* ; Werner, C.* ; Biasi, C.* ; Dannenmann, M.*

A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils-changing the paradigm.

Environ. Res. Lett. 17:013004 (2022)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the rather short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously.
Impact Factor
Scopus SNIP
Scopus
Cited By
Altmetric
6.947
1.906
11
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Review
Schlagwörter Permafrost ; Nitrogen ; Gross N Turnover ; Mineralization ; Meta-analysis ; Plant-soil-microbe System ; Global Change; High Arctic Heath; Climate-change; Organic-matter; Amino-acid; Inorganic Nitrogen; Temperature Sensitivity; Latitudinal Transect; Dinitrogen Fixation; Oxide Emissions; Thermo-erosion
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 1748-9318
e-ISSN 1748-9326
Quellenangaben Band: 17, Heft: 1, Seiten: , Artikelnummer: 013004 Supplement: ,
Verlag Institute of Physics Publishing (IOP)
Verlagsort Temple Circus, Temple Way, Bristol Bs1 6be, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504700-001
Förderungen NSFC
DFG
Scopus ID 85123785626
Erfassungsdatum 2022-06-03