PuSH - Publikationsserver des Helmholtz Zentrums München

Ayhan, M.S.* ; Kuemmerle, L. ; Kühlewein, L.* ; Inhoffen, W.* ; Aliyeva, G.* ; Ziemssen, F.* ; Berens, P.*

Clinical validation of saliency maps for understanding deep neural networks in ophthalmology.

Med. Image Anal. 77:102364 (2022)
Postprint DOI PMC
Open Access Green
Deep neural networks (DNNs) have achieved physician-level accuracy on many imaging-based medical diagnostic tasks, for example classification of retinal images in ophthalmology. However, their decision mechanisms are often considered impenetrable leading to a lack of trust by clinicians and patients. To alleviate this issue, a range of explanation methods have been proposed to expose the inner workings of DNNs leading to their decisions. For imaging-based tasks, this is often achieved via saliency maps. The quality of these maps are typically evaluated via perturbation analysis without experts involved. To facilitate the adoption and success of such automated systems, however, it is crucial to validate saliency maps against clinicians. In this study, we used three different network architectures and developed ensembles of DNNs to detect diabetic retinopathy and neovascular age-related macular degeneration from retinal fundus images and optical coherence tomography scans, respectively. We used a variety of explanation methods and obtained a comprehensive set of saliency maps for explaining the ensemble-based diagnostic decisions. Then, we systematically validated saliency maps against clinicians through two main analyses — a direct comparison of saliency maps with the expert annotations of disease-specific pathologies and perturbation analyses using also expert annotations as saliency maps. We found the choice of DNN architecture and explanation method to significantly influence the quality of saliency maps. Guided Backprop showed consistently good performance across disease scenarios and DNN architectures, suggesting that it provides a suitable starting point for explaining the decisions of DNNs on retinal images.
Impact Factor
Scopus SNIP
Altmetric
13.828
5.246
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Deep Neural Networks ; Diabetic Retinopathy ; Neovascular Age-related Macular Degeneration ; Saliency Maps
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 1361-8415
e-ISSN 1361-8415
Quellenangaben Band: 77, Heft: , Seiten: , Artikelnummer: 102364 Supplement: ,
Verlag Elsevier
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Computational Biology (ICB)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
G-505800-001
Förderungen Bundesministerium für Bildung und Forschung
Deutsche Forschungsgemeinschaft
Novartis
Scopus ID 85123636115
PubMed ID 35101727
Erfassungsdatum 2022-06-08