Spatial components of molecular tissue biology.
Nat. Biotechnol. 40, 308–318 (2022)
Methods for profiling RNA and protein expression in a spatially resolved manner are rapidly evolving, making it possible to comprehensively characterize cells and tissues in health and disease. To maximize the biological insights obtained using these techniques, it is critical to both clearly articulate the key biological questions in spatial analysis of tissues and develop the requisite computational tools to address them. Developers of analytical tools need to decide on the intrinsic molecular features of each cell that need to be considered, and how cell shape and morphological features are incorporated into the analysis. Also, optimal ways to compare different tissue samples at various length scales are still being sought. Grouping these biological problems and related computational algorithms into classes across length scales, thus characterizing common issues that need to be addressed, will facilitate further progress in spatial transcriptomics and proteomics.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gene-expression; Resolved Transcriptomics; Analysis Strategies; Power Analysis; Cell Atlas; Seq; Identification; Microenvironment; Reconstruction; Technologies
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
1087-0156
e-ISSN
1546-1696
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 40,
Heft: 3,
Seiten: 308–318
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
New York, NY
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Joachim Herz Stiftung
German Research Foundation (DFG) fellowship through the Graduate School of Quantitative Biosciences Munich
sparse2big
Networking Fund through Helmholtz AI
Helmholtz Association's Initiative
BMBF
Helmholtz Association under the joint research school 'Munich School for Data Science-MUDS'
Copyright
Erfassungsdatum
2022-02-09