PuSH - Publikationsserver des Helmholtz Zentrums München

Reinhardt, J.* ; Sharma, V. ; Stavridou, A.* ; Lindner, A. ; Reinhardt, S.* ; Petzold, A.* ; Lesche, M.* ; Rost, F.* ; Bonifacio, E. ; Eugster, A.*

Distinguishing activated T regulatory cell and T conventional cells by single-cell technologies.

Immunology 166, 121-137 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Resting conventional T cells (Tconv) can be distinguished from T regulatory cells (Treg) by the canonical markers FOXP3, CD25 and CD127. However, the expression of these proteins alters after T-cell activation leading to overlap between Tconv and Treg. The objective of this study was to distinguish resting and antigen-responsive T effector (Tconv) and Treg using single-cell technologies. CD4+ Treg and Tconv cells were stimulated with antigen and responsive and non-responsive populations processed for targeted and non-targeted single-cell RNAseq. Machine learning was used to generate a limited set of genes that could distinguish responding and non-responding Treg and Tconv cells and which was used for single-cell multiplex qPCR and to design a flow cytometry panel. Targeted scRNAseq clearly distinguished the four-cell populations. A minimal set of 27 genes was identified by machine learning algorithms to provide discrimination of the four populations at >95% accuracy. In all, 15 of the genes were validated to be differentially expressed by single-cell multiplex qPCR. Discrimination of responding Treg from responding Tconv could be achieved by a flow cytometry strategy that included staining for CD25, CD127, FOXP3, IKZF2, ITGA4, and the novel marker TRIM which was strongly expressed in Tconv and weakly expressed in both responding and non-responding Treg. A minimal set of genes was identified that discriminates responding and non-responding CD4+ Treg and Tconv cells and, which have identified TRIM as a marker to distinguish Treg by flow cytometry.
Impact Factor
Scopus SNIP
Altmetric
7.215
1.316
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Activation ; Cd4 Cell ; T Cell ; Transcriptomics ; Treg
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0019-2805
e-ISSN 1365-2567
Zeitschrift Immunology
Quellenangaben Band: 166, Heft: 1, Seiten: 121-137 Artikelnummer: , Supplement: ,
Verlag Wiley
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Pancreatic Islet Research (IPI)
POF Topic(s) 90000 - German Center for Diabetes Research
Forschungsfeld(er) Helmholtz Diabetes Center
PSP-Element(e) G-502600-006
Förderungen INNODIATranslational approaches to disease modifying therapy of type 1 diabetes: an innovation approach towards understanding and arresting Type 1 diabetes
Deutsche Forschungsgemeinschaft
Scopus ID 85125538108
PubMed ID 35196398
Erfassungsdatum 2022-06-30