PuSH - Publikationsserver des Helmholtz Zentrums München

Gomari, D.P. ; Schweickart, A.* ; Cerchietti, L.* ; Paietta, E.* ; Fernandez, H.H.* ; Al-Amin, H.* ; Suhre, K.* ; Krumsiek, J.*

Variational autoencoders learn transferrable representations of metabolomics data.

Comm. Biol. 5:645 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Dimensionality reduction approaches are commonly used for the deconvolution of high-dimensional metabolomics datasets into underlying core metabolic processes. However, current state-of-the-art methods are widely incapable of detecting nonlinearities in metabolomics data. Variational Autoencoders (VAEs) are a deep learning method designed to learn nonlinear latent representations which generalize to unseen data. Here, we trained a VAE on a large-scale metabolomics population cohort of human blood samples consisting of over 4500 individuals. We analyzed the pathway composition of the latent space using a global feature importance score, which demonstrated that latent dimensions represent distinct cellular processes. To demonstrate model generalizability, we generated latent representations of unseen metabolomics datasets on type 2 diabetes, acute myeloid leukemia, and schizophrenia and found significant correlations with clinical patient groups. Notably, the VAE representations showed stronger effects than latent dimensions derived by linear and non-linear principal component analysis. Taken together, we demonstrate that the VAE is a powerful method that learns biologically meaningful, nonlinear, and transferrable latent representations of metabolomics data.
Impact Factor
Scopus SNIP
Altmetric
6.548
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2399-3642
e-ISSN 2399-3642
Quellenangaben Band: 5, Heft: 1, Seiten: , Artikelnummer: 645 Supplement: ,
Verlag Springer
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503891-001
Förderungen European Commission
National Institute for Health and Care Research
Medical Research Council
Wellcome Trust
National Cancer Institute
National Institute on Aging
National Institutes of Health
Google Cloud
Scopus ID 85133137437
PubMed ID 35773471
Erfassungsdatum 2022-07-19