PuSH - Publikationsserver des Helmholtz Zentrums München

Hinman, N.W.* ; Mave, M.A.* ; Powers, L.C.* ; Schmitt-Kopplin, P. ; Cabrol, N.A.* ; Gonsior, M.*

Controls on reactive oxygen species cycles in Yellowstone Hot Springs: Implications for biosignature preservation on Mars.

Front. Astron. Space Sci. 9:727015 (2022)
Verlagsversion Forschungsdaten DOI
Open Access Gold
Creative Commons Lizenzvertrag
Early Earth and Mars had analogous environments. While life developed on our planet, the question of whether it did on Mars remains to be answered. Hot spring deposits are compelling targets for exploration because of their high habitability and potential to retain morphological and chemical biosignatures. As a result in this study, we aim to better understand the potential for biosignature preservation in Fe-bearing hydrothermal systems. Understanding oxidation-reduction reactions involving Fe in hot springs is a key step in elucidating the preservation process. Fe reacts readily with reactive oxygen species (ROS), which are produced in hot spring surface waters through photochemical processes. Furthermore, Fe3+ can bind to cell membranes and preserve complex organic molecules (i.e., biomarkers). ROS formation is typically controlled by photoreactions with dissolved organic matter (DOM). However, Fe redox reactions more likely control ROS formation in these Fe-bearing systems. We deconvolved the relationship of ROS with Fe in hot springs and evaluated the role that DOM and dissolved organic sulfur (DOS) may have in ROS production. To better understand these coupled systems, field and laboratory experiments were conducted in hot springs of Yellowstone National Park. In situ H2O2 concentrations observed in these hot springs were comparable to, or higher than, those of other high-temperature systems. Reaction rates determined by measuring concentrations after specified time intervals varied based on water compositions and the presence of particulate or dissolved matter. Fe speciation (photochemical reactivity), concentration, and solubility further determined ROS cycling rates. Specifically, photochemically active Fe enhanced both ROS formation and decay rates depending on incident UV irradiance, and rates increased along with Fe concentration and solubility (i.e., in acidic conditions). Better understanding how ROS and Fe cycle in predominantly abiotic conditions will eventually aid in distinguishing between biosignatures and abiotic substances in the rock record.
Impact Factor
Scopus SNIP
Altmetric
4.055
1.081
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Biosignature ; Hot Spring ; Mars ; Organic Sulfur ; Photochemistry ; Reactive Oxygen Species ; Ultrahigh Resolution Mass Spectrometry (ft-icr Ms)
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2296-987X
e-ISSN 2296-987X
Quellenangaben Band: 9, Heft: , Seiten: , Artikelnummer: 727015 Supplement: ,
Verlag Frontiers
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504800-001
Förderungen Deutsche Forschungsgemeinschaft
NASA Astrobiology Institute
Sigma Xia
Scopus ID 85134371022
Erfassungsdatum 2022-07-28