PuSH - Publikationsserver des Helmholtz Zentrums München

Boe, R.H.* ; Ayyappan, V.* ; Schuh, L. ; Raj, A.*

Allelic correlation is a marker of trade-offs between barriers to transmission of expression variability and signal responsiveness in genetic networks.

Cell Syst. 13, 1016-1032.e6 (2022)
Postprint DOI PMC
Open Access Green
Genetic networks should respond to signals but prevent the transmission of spontaneous fluctuations. Limited data from mammalian cells suggest that noise transmission is uncommon, but systematic claims about noise transmission have been limited by the inability to directly measure it. Here, we build a mathematical framework modeling allelic correlation and noise transmission, showing that allelic correlation and noise transmission correspond across model parameters and network architectures. Limiting noise transmission comes with the trade-off of being unresponsive to signals, and within responsive regimes, there is a further trade-off between response time and basal noise transmission. Analysis of allele-specific single-cell RNA-sequencing data revealed that genes encoding upstream factors in signaling pathways and cell-type-specific factors have higher allelic correlation than downstream factors, suggesting they are more subject to regulation. Overall, our findings suggest that some noise transmission must result from signal responsiveness, but it can be minimized by trading off for a slower response. A record of this paper's transparent peer review process is included in the supplemental information.
Impact Factor
Scopus SNIP
Altmetric
11.091
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Allelic Correlation ; Network Modeling ; Noise Transmission ; Signal Processing ; Transcriptional Noise; Dynamic Proteomics; Cancer-cells; Noise; Consequences; Proteins; Origins
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 2405-4712
e-ISSN 2405-4720
Zeitschrift Cell Systems
Quellenangaben Band: 13, Heft: 12, Seiten: 1016-1032.e6 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort Maryland Heights, MO
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540007-001
Förderungen Federal Ministry of Education and Research, Germany (Bundesministerium fur Bildung und Forschung, BMBF)
NIH
Scopus ID 85144556678
PubMed ID 36450286
Erfassungsdatum 2022-12-08