Gonzalez-Alonso, M. ; Boldeanu, M.* ; Koritnik, T.* ; Gonçalves, J.* ; Belzner, L.* ; Stemmler, T.* ; Gebauer, R.* ; Grewling, Ł.* ; Tummon, F.* ; Maya-Manzano, J.M. ; Ariño, A.H.* ; Schmidt-Weber, C.B. ; Buters, J.T.M.
     
 
    
        
Alternaria spore exposure in Bavaria, Germany, measured using artificial intelligence algorithms in a network of BAA500 automatic pollen monitors.
    
    
        
    
    
        
        Sci. Total Environ. 861:160180 (2023)
    
    
    
		
		
			
				Although Alternaria spores are well-known allergenic fungal spores, automatic bioaerosol recognition systems have not been trained to recognize these particles until now. Here we report the development of a new algorithm able to classify Alternaria spores with BAA500 automatic bioaerosol monitors. The best validation score was obtained when the model was trained on both data from the original dataset and artificially generated images, with a validation unweighted mean Intersection over Union (IoU), also called Jaccard Index, of 0.95. Data augmentation techniques were applied to the training set. While some particles were not recognized (false negatives), false positives were few. The results correlated well with manual counts (mean of four Hirst-type traps), with R2 = 0.78. Counts from BAA500 were 1.92 times lower than with Hirst-type traps. The algorithm was then used to re-analyze the historical automatic pollen monitoring network (ePIN) dataset (2018–2022), which lacked Alternaria spore counts. Re-analysis of past data showed that Alternaria spore exposure in Bavaria was very variable, with the highest counts in the North (Marktheidenfeld, 154 m a.s.l.), and the lowest values close to the mountains in the South (Garmisch-Partenkirchen, 735 m a.s.l.). This approach shows that in our network future algorithms can be run on past datasets. Over time, the use of different algorithms could lead to misinterpretations as stemming from climate change or other phenological causes. Our approach enables consistent, homogeneous treatment of long-term series, thus preventing variability in particle counts owing to changes in the algorithms.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Allergy ; Alternaria ; Automatic Monitors ; Classification ; Convolutional Neural Networks ; Fungal Spores ; Time Series ; U-net; Respiratory Allergy; Air-pollution; Immunotherapy; Asthma; Cladosporium
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2023
    
 
    
        Prepublished im Jahr 
        2022
    
 
    
        HGF-Berichtsjahr
        2022
    
 
    
    
        ISSN (print) / ISBN
        0048-9697
    
 
    
        e-ISSN
        1879-1026
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 861,  
	    Heft: ,  
	    Seiten: ,  
	    Artikelnummer: 160180 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Elsevier
        
 
        
            Verlagsort
            Radarweg 29, 1043 Nx Amsterdam, Netherlands
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30202 - Environmental Health
    
 
    
        Forschungsfeld(er)
        Allergy	
    
 
    
        PSP-Element(e)
        G-505400-001
    
 
    
        Förderungen
        COST Action
Bayerisches Landesamt fur Gesundheit und Lebensmittelsicherheit (LGL)
EUMETNET AutoPollen Programme
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2023-01-12