Lotfollahi, M. ; Klimovskaia Susmelj, A.* ; De Donno, C. ; Hetzel, L. ; Ji, Y. ; Ibarra Del Rio, I.A. ; Srivatsan, S.R.* ; Naghipourfar, M.* ; Daza, R.M.* ; Martin, B.* ; Shendure, J.* ; McFaline-Figueroa, J.L.* ; Boyeau, P.* ; Wolf, F.A. ; Yakubova, N.* ; Günnemann, S.* ; Trapnell, C.* ; Lopez-Paz, D.* ; Theis, F.J.
Predicting cellular responses to complex perturbations in high-throughput screens.
Mol. Syst. Biol. 19:e11517 (2023)
Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Generative Modeling ; High-throughput Screening ; Machine Learning ; Perturbation Prediction ; Single-cell Transcriptomics; Seq; Cancer; Mechanisms; Therapy
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1744-4292
e-ISSN
1744-4292
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 19,
Heft: 6,
Seiten: ,
Artikelnummer: e11517
Supplement: ,
Reihe
Verlag
EMBO Press
Verlagsort
111 River St, Hoboken 07030-5774, Nj Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Projekt DEAL
European Union
Helmholtz Association's Initiative and Networking Fund through Helmholtz AI
Chan Zuckerberg Initiative DAF (advised fund of Silicon Valley Community Foundation)
Helmholtz Association
BMBF
Copyright
Erfassungsdatum
2023-10-06