PuSH - Publikationsserver des Helmholtz Zentrums München

Jin, B.* ; Milling, M.* ; Plaza, M.P. ; Brunner, J.O.* ; Traidl-Hoffmann, C. ; Schuller, B.W.* ; Damialis, A.*

Airborne pollen grain detection from partially labelled data utilising semi-supervised learning.

Sci. Total Environ. 891:164295 (2023)
Postprint DOI PMC
Open Access Green
Airborne pollen monitoring has been conducted for more than a century now, as knowledge of the quantity and periodicity of airborne pollen has diverse use cases, like reconstructing historic climates and tracking current climate change, forensic applications, and up to warning those affected by pollen-induced respiratory allergies. Hence, related work on automation of pollen classification already exists. In contrast, detection of pollen is still conducted manually, and it is the gold standard for accuracy. So, here we used a new-generation, automated, near-real-time pollen monitoring sampler, the BAA500, and we used data consisting of both raw and synthesised microscope images. Apart from the automatically generated, commercially-labelled data of all pollen taxa, we additionally used manual corrections to the pollen taxa, as well as a manually created test set of bounding boxes and pollen taxa, so as to more accurately evaluate the real-life performance. For the pollen detection, we employed two-stage deep neural network object detectors. We explored a semi-supervised training scheme to remedy the partial labelling. Using a teacher-student approach, the model can add pseudo-labels to complete the labelling during training. To evaluate the performance of our deep learning algorithms and to compare them to the commercial algorithm of the BAA500, we created a manual test set, in which an expert aerobiologist corrected automatically annotated labels. For the novel manual test set, both the supervised and semi-supervised approaches clearly outperform the commercial algorithm with an F1 score of up to 76.9 % compared to 61.3 %. On an automatically created and partially labelled test dataset, we obtain a maximum mAP of 92.7 %. Additional experiments on raw microscope images show comparable performance for the best models, which potentially justifies reducing the complexity of the image generation process. Our results bring automatic pollen monitoring a step forward, as they close the gap in pollen detection performance between manual and automated procedure.
Impact Factor
Scopus SNIP
Altmetric
9.800
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Aerobiology ; Automatic Detection ; Deep Learning ; Object Detection ; Pollen Taxonomy ; Semi-supervised Learning; Allergic Rhinitis; Impact
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 0048-9697
e-ISSN 1879-1026
Quellenangaben Band: 891, Heft: , Seiten: , Artikelnummer: 164295 Supplement: ,
Verlag Elsevier
Verlagsort Radarweg 29, 1043 Nx Amsterdam, Netherlands
Begutachtungsstatus Peer reviewed
Institut(e) Institute of Environmental Medicine (IEM)
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Allergy
PSP-Element(e) G-503400-001
Scopus ID 85160285663
PubMed ID 37211136
Erfassungsdatum 2023-10-06