Solvability in the sense of sequences for some logarithmic Schrödinger operators in higher dimensions.
J. Pseudo Diff. Oper. App. 14:32 (2023)
We study the solvability of certain linear nonhomogeneous equations containing the logarithm of the sum of the two Schrödinger operators in higher dimensions and demonstrate that under the reasonable technical assumptions the convergence in L2(Rd) of the right sides yields the existence and the convergence in L2(Rd) of the solutions. The equations involve the operators without the Fredholm property and we use the methods of the spectral and scattering theory for the Schrödinger type operators to generalize the results of our preceding work Efendiev and Vougalter(Monatsh. Math., 2023). As distinct from the many previous articles on the subject, for the operators contained in our equations the essential spectra fill the whole real line.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Non-fredholm Operators ; Schrödinger Operators ; Solvability Conditions; Integrodifferential Equations; Properness Properties; Elliptic-operators; Holder Theory; Fredholm; Dirichlet; Existence; Systems
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2023
Prepublished im Jahr
0
HGF-Berichtsjahr
2023
ISSN (print) / ISBN
1662-9981
e-ISSN
1662-999X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 14,
Heft: 2,
Seiten: ,
Artikelnummer: 32
Supplement: ,
Reihe
Verlag
Birkhäuser
Verlagsort
Picassoplatz 4, Basel, 4052, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Copyright
Erfassungsdatum
2023-11-30