PuSH - Publikationsserver des Helmholtz Zentrums München

Efendiyev, M.A. ; Vougalter, V.*

Solvability in the sense of sequences for some logarithmic Schrödinger operators in higher dimensions.

J. Pseudo Diff. Oper. App. 14:32 (2023)
Postprint DOI
Open Access Green
We study the solvability of certain linear nonhomogeneous equations containing the logarithm of the sum of the two Schrödinger operators in higher dimensions and demonstrate that under the reasonable technical assumptions the convergence in L2(Rd) of the right sides yields the existence and the convergence in L2(Rd) of the solutions. The equations involve the operators without the Fredholm property and we use the methods of the spectral and scattering theory for the Schrödinger type operators to generalize the results of our preceding work Efendiev and Vougalter(Monatsh. Math., 2023). As distinct from the many previous articles on the subject, for the operators contained in our equations the essential spectra fill the whole real line.
Impact Factor
Scopus SNIP
Altmetric
1.100
0.911
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Non-fredholm Operators ; Schrödinger Operators ; Solvability Conditions; Integrodifferential Equations; Properness Properties; Elliptic-operators; Holder Theory; Fredholm; Dirichlet; Existence; Systems
Sprache englisch
Veröffentlichungsjahr 2023
HGF-Berichtsjahr 2023
ISSN (print) / ISBN 1662-9981
e-ISSN 1662-999X
Quellenangaben Band: 14, Heft: 2, Seiten: , Artikelnummer: 32 Supplement: ,
Verlag Birkhäuser
Verlagsort Picassoplatz 4, Basel, 4052, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85153197715
Erfassungsdatum 2023-11-30