Voinarovska, V.* ; Kabeshov, M.* ; Dudenko, D.* ; Genheden, S.* ; Tetko, I.V.
     
 
    
        
When yield prediction does not yield prediction: An overview of the current challenges.
    
    
        
    
    
        
        J. Chem. Inf. Model. 64, 42-56 (2024)
    
    
    
		
		
			
				Machine Learning (ML) techniques face significant challenges when predicting advanced chemical properties, such as yield, feasibility of chemical synthesis, and optimal reaction conditions. These challenges stem from the high-dimensional nature of the prediction task and the myriad essential variables involved, ranging from reactants and reagents to catalysts, temperature, and purification processes. Successfully developing a reliable predictive model not only holds the potential for optimizing high-throughput experiments but can also elevate existing retrosynthetic predictive approaches and bolster a plethora of applications within the field. In this review, we systematically evaluate the efficacy of current ML methodologies in chemoinformatics, shedding light on their milestones and inherent limitations. Additionally, a detailed examination of a representative case study provides insights into the prevailing issues related to data availability and transferability in the discipline.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Review
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Chemistry Informer Libraries; Chemical-reaction; Machine; Generation; Language; System; Information; Design; Smiles; Qsar
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2024
    
 
    
        Prepublished im Jahr 
        2023
    
 
    
        HGF-Berichtsjahr
        2023
    
 
    
    
        ISSN (print) / ISBN
        0021-9576
    
 
    
        e-ISSN
        1520-5142
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 64,  
	    Heft: 1,  
	    Seiten: 42-56 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            American Chemical Society (ACS)
        
 
        
            Verlagsort
            1155 16th St, Nw, Washington, Dc 20036 Usa
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-503000-001
    
 
    
        Förderungen
        odowska-Curie Actions grant agreement "Advanced Machine Learning for Innovative Drug Discovery
European Union's Horizon 2020 research and innovation program under the Marie Sklstrok
HORIZON EUROPE Marie Sklodowska-Curie Actions
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2024-01-10