Topological benchmarking of algorithms to infer Gene Regulatory Networks from Single-Cell RNA-seq Data.
Bioinformatics 40:btae267 (2024)
MOTIVATION: In recent years, many algorithms for inferring gene regulatory networks from single-cell transcriptomic data have been published. Several studies have evaluated their accuracy in estimating the presence of an interaction between pairs of genes. However, these benchmarking analyses do not quantify the algorithms' ability to capture structural properties of networks, which are fundamental, for example, for studying the robustness of a gene network to external perturbations. Here, we devise a three-step benchmarking pipeline called STREAMLINE that quantifies the ability of algorithms to capture topological properties of networks and identify hubs. RESULTS: To this aim, we use data simulated from different types of networks as well as experimental data from three different organisms. We apply our benchmarking pipeline to four inference algorithms and provide guidance on which algorithm should be used depending on the global network property of interest. AVAILABILITY AND IMPLEMENTATION: STREAMLINE is available at https://github.com/ScialdoneLab/STREAMLINE. The data generated in this study are available at https://doi.org/10.5281/zenodo.10710444. CONTACT: Direct inquiries should be addressed to the corresponding authors. SUPPLEMENTARY INFORMATION: Supplementary Information is available online.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gene Regulatory Network ; Hub Genes ; Single-cell Transcriptomics ; Topology; Small-world; Centrality; Integration; Challenges; Robustness; Biology
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
e-ISSN
1367-4811
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 40,
Heft: 5,
Seiten: ,
Artikelnummer: btae267
Supplement: ,
Reihe
Verlag
Oxford University Press
Verlagsort
Oxford
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30204 - Cell Programming and Repair
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Stem Cell and Neuroscience
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP-Element(e)
G-506290-001
G-506200-001
G-502800-001
G-503800-001
Förderungen
Helmholtz Association
Helmholtz Association under the joint research school "Munich School for Data Science-MUDS
Joachim Herz Stiftung Add-on Fellowship for Interdisciplinary Life Science
Copyright
Erfassungsdatum
2024-06-07