PuSH - Publikationsserver des Helmholtz Zentrums München

Topological benchmarking of algorithms to infer Gene Regulatory Networks from Single-Cell RNA-seq Data.

Bioinformatics 40:btae267 (2024)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
MOTIVATION: In recent years, many algorithms for inferring gene regulatory networks from single-cell transcriptomic data have been published. Several studies have evaluated their accuracy in estimating the presence of an interaction between pairs of genes. However, these benchmarking analyses do not quantify the algorithms' ability to capture structural properties of networks, which are fundamental, for example, for studying the robustness of a gene network to external perturbations. Here, we devise a three-step benchmarking pipeline called STREAMLINE that quantifies the ability of algorithms to capture topological properties of networks and identify hubs. RESULTS: To this aim, we use data simulated from different types of networks as well as experimental data from three different organisms. We apply our benchmarking pipeline to four inference algorithms and provide guidance on which algorithm should be used depending on the global network property of interest. AVAILABILITY AND IMPLEMENTATION: STREAMLINE is available at https://github.com/ScialdoneLab/STREAMLINE. The data generated in this study are available at https://doi.org/10.5281/zenodo.10710444. CONTACT: Direct inquiries should be addressed to the corresponding authors. SUPPLEMENTARY INFORMATION: Supplementary Information is available online.
Impact Factor
Scopus SNIP
Altmetric
4.400
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Gene Regulatory Network ; Hub Genes ; Single-cell Transcriptomics ; Topology; Small-world; Centrality; Integration; Challenges; Robustness; Biology
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
e-ISSN 1367-4811
Zeitschrift Bioinformatics
Quellenangaben Band: 40, Heft: 5, Seiten: , Artikelnummer: btae267 Supplement: ,
Verlag Oxford University Press
Verlagsort Oxford
Begutachtungsstatus Peer reviewed
POF Topic(s) 30204 - Cell Programming and Repair
30203 - Molecular Targets and Therapies
30205 - Bioengineering and Digital Health
Forschungsfeld(er) Stem Cell and Neuroscience
Helmholtz Diabetes Center
Enabling and Novel Technologies
PSP-Element(e) G-506290-001
G-506200-001
G-502800-001
G-503800-001
Förderungen Helmholtz Association
Helmholtz Association under the joint research school "Munich School for Data Science-MUDS
Joachim Herz Stiftung Add-on Fellowship for Interdisciplinary Life Science
Scopus ID 85193456155
PubMed ID 38627250
Erfassungsdatum 2024-06-07