Exploiting data diversity in multi-domain federated learning.
Mach. Learn.: Sci. Technol. 5:025041 (2024)
Federated learning (FL) is an evolving machine learning technique that allows collaborative model training without sharing the original data among participants. In real-world scenarios, data residing at multiple clients are often heterogeneous in terms of different resolutions, magnifications, scanners, or imaging protocols, and thus challenging for global FL model convergence in collaborative training. Most of the existing FL methods consider data heterogeneity within one domain by assuming same data variation in each client site. In this paper, we consider data heterogeneity in FL with different domains of heterogeneous data by raising the problems of domain-shift, class-imbalance, and missing data. We propose a method, multi-domain FL as a solution to heterogeneous training data from multiple domains by training robust vision transformer model. We use two loss functions, one for correctly predicting class labels and other for encouraging similarity and dissimilarity over latent features, to optimize the global FL model. We perform various experiments using different convolution-based networks and non-convolutional Transformer architectures on multi-domain datasets. We evaluate the proposed approach on benchmark datasets and compare with the existing FL methods. Our results show the superiority of the proposed approach which performs better in term of robust FL global model than the exiting methods.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Class-imbalance ; Data Heterogeneity ; Domain-shift ; Federated Learning ; Multi-domain Data
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
2632-2153
e-ISSN
2632-2153
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 5,
Heft: 2,
Seiten: ,
Artikelnummer: 025041
Supplement: ,
Reihe
Verlag
Institute of Physics Publishing (IOP)
Verlagsort
Temple Circus, Temple Way, Bristol Bs1 6be, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-540007-001
Förderungen
Department Strategic Project of the University of Udine
Copyright
Erfassungsdatum
2024-07-09