PuSH - Publikationsserver des Helmholtz Zentrums München

Drost, F. ; An, Y. ; Bonafonte Pardás, I. ; Dratva, L.M.* ; Lindeboom, R.G.H.* ; Haniffa, M.* ; Teichmann, S.A.* ; Theis, F.J. ; Lotfollahi, M. ; Schubert, B.

Multi-modal generative modeling for joint analysis of single-cell T cell receptor and gene expression data.

Nat. Commun. 15:5577 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Recent advances in single-cell immune profiling have enabled the simultaneous measurement of transcriptome and T cell receptor (TCR) sequences, offering great potential for studying immune responses at the cellular level. However, integrating these diverse modalities across datasets is challenging due to their unique data characteristics and technical variations. Here, to address this, we develop the multimodal generative model mvTCR to fuse modality-specific information across transcriptome and TCR into a shared representation. Our analysis demonstrates the added value of multimodal over unimodal approaches to capture antigen specificity. Notably, we use mvTCR to distinguish T cell subpopulations binding to SARS-CoV-2 antigens from bystander cells. Furthermore, when combined with reference mapping approaches, mvTCR can map newly generated datasets to extensive T cell references, facilitating knowledge transfer. In summary, we envision mvTCR to enable a scalable analysis of multimodal immune profiling data and advance our understanding of immune responses.
Impact Factor
Scopus SNIP
Altmetric
14.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Memory; Effector; Naive; Activation; Prediction; Landscape; Profiles; Reveals
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 15, Heft: 1, Seiten: , Artikelnummer: 5577 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen European Union
Joachim Herz Stiftung
Helmholtz Association
Helmholtz International Lab "Causal Cell Dynamics"
Helmholtz Association's Initiative and Networking Fund on the HAICORE@FZJ partition
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
BMBF grant DeepTCR
Projekt DEAL
Scopus ID 85197384036
PubMed ID 38956082
Erfassungsdatum 2024-07-15