PuSH - Publikationsserver des Helmholtz Zentrums München

Salehi, F.* ; Lopera Gonzalez, L.I.* ; Bayat, S.* ; Kleyer, A.* ; Zanca, D.* ; Brost, A.* ; Schett, G.* ; Eskofier, B.M.

Machine learning prediction of treatment response to biological disease-modifying antirheumatic drugs in rheumatoid arthritis.

J. Clin. Med. 13:3890 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Background: Disease-modifying antirheumatic drugs (bDMARDs) have shown efficacy in treating Rheumatoid Arthritis (RA). Predicting treatment outcomes for RA is crucial as approximately 30% of patients do not respond to bDMARDs and only half achieve a sustained response. This study aims to leverage machine learning to predict both initial response at 6 months and sustained response at 12 months using baseline clinical data. Methods: Baseline clinical data were collected from 154 RA patients treated at the University Hospital in Erlangen, Germany. Five machine learning models were compared: Extreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), K-nearest neighbors (KNN), Support Vector Machines (SVM), and Random Forest. Nested cross-validation was employed to ensure robustness and avoid overfitting, integrating hyperparameter tuning within its process. Results: XGBoost achieved the highest accuracy for predicting initial response (AUC-ROC of 0.91), while AdaBoost was the most effective for sustained response (AUC-ROC of 0.84). Key predictors included the Disease Activity Score-28 using erythrocyte sedimentation rate (DAS28-ESR), with higher scores at baseline associated with lower response chances at 6 and 12 months. Shapley additive explanations (SHAP) identified the most important baseline features and visualized their directional effects on treatment response and sustained response. Conclusions: These findings can enhance RA treatment plans and support clinical decision-making, ultimately improving patient outcomes by predicting response before starting medication.
Impact Factor
Scopus SNIP
Altmetric
3.000
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bdmards ; Machine Learning Predictive Model ; Prediction ; Rheumatoid Arthritis ; Treatment Response; Factor-alpha Agents; Impact; Costs
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2077-0383
e-ISSN 2077-0383
Quellenangaben Band: 13, Heft: 13, Seiten: , Artikelnummer: 3890 Supplement: ,
Verlag MDPI
Verlagsort Basel
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540008-001
Förderungen Digital Health Innovation Platform
Scopus ID 85198432978
PubMed ID 38999454
Erfassungsdatum 2024-07-29