PuSH - Publikationsserver des Helmholtz Zentrums München

Drost, F. ; Dorigatti, E. ; Straub, A.* ; Hilgendorf, P.* ; Wagner, K.I.* ; Heyer, K.* ; López Montes, M.* ; Bischl, B.* ; Busch, D.H.* ; Schober, K.* ; Schubert, B.

Predicting T cell receptor functionality against mutant epitopes.

Cell Genom. 4:100634 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Cancer cells and pathogens can evade T cell receptors (TCRs) via mutations in immunogenic epitopes. TCR cross-reactivity (i.e., recognition of multiple epitopes with sequence similarities) can counteract such escape but may cause severe side effects in cell-based immunotherapies through targeting self-antigens. To predict the effect of epitope point mutations on T cell functionality, we here present the random forest-based model Predicting T Cell Epitope-Specific Activation against Mutant Versions (P-TEAM). P-TEAM was trained and tested on three datasets with TCR responses to single-amino-acid mutations of the model epitope SIINFEKL, the tumor neo-epitope VPSVWRSSL, and the human cytomegalovirus antigen NLVPMVATV, totaling 9,690 unique TCR-epitope interactions. P-TEAM was able to accurately classify T cell reactivities and quantitatively predict T cell functionalities for unobserved single-point mutations and unseen TCRs. Overall, P-TEAM provides an effective computational tool to study T cell responses against mutated epitopes.
Impact Factor
Scopus SNIP
Altmetric
11.100
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter T Cell Receptor ; Tcr-epitope Prediction ; Active Learning ; Cross-reactivity ; Deep Mutational Scan ; Epitope ; Machine Learning ; Mutation; Peptide; Deconvolution; Accuracy; Complex
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2666-979X
e-ISSN 2666-979X
Zeitschrift Cell Genomics
Quellenangaben Band: 4, Heft: 9, Seiten: , Artikelnummer: 100634 Supplement: ,
Verlag Elsevier
Verlagsort Radarweg 29, 1043 Nx Amsterdam, Netherlands
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Else Kroner-Stiftung
Deutsche Forschungsgemeinschaft (DFG)
BMBF
Joachim Herz Stiftung
Helmholtz Association
Scopus ID 85203131023
PubMed ID 39151427
Erfassungsdatum 2024-10-01