PuSH - Publikationsserver des Helmholtz Zentrums München

Halama, A.* ; Zaghlool, S.* ; Thareja, G.* ; Kader, S.* ; Al Muftah, W.A.* ; Mook-Kanamori, M.J.* ; Sarwath, H.* ; Mohamoud, Y.A.* ; Stephan, N.* ; Ameling, S.* ; Pucic Baković, M.* ; Krumsiek, J.* ; Prehn, C. ; Adamski, J. ; Schwenk, J.M.* ; Friedrich, N.* ; Völker, U.* ; Wuhrer, M.* ; Lauc, G.* ; Najafi-Shoushtari, S.H.* ; Malek, J.A.* ; Graumann, J.* ; Mook-Kanamori, D.* ; Schmidt, F.* ; Suhre, K.*

A roadmap to the molecular human linking multiomics with population traits and diabetes subtypes.

Nat. Commun. 15:7111 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.
Impact Factor
Scopus SNIP
Altmetric
14.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Dna Methylation; Association; Insulin; Urine; Blood; Database; Serum; Identification; Glycosylation; Translation
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 15, Heft: 1, Seiten: , Artikelnummer: 7111 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30505 - New Technologies for Biomedical Discoveries
30201 - Metabolic Health
Forschungsfeld(er) Enabling and Novel Technologies
Genetics and Epidemiology
PSP-Element(e) A-630710-001
G-500600-001
Förderungen Qatar National Research Fund (QNRF)
Biomedical Research Program at Weill Cornell Medicine in Qatar - Qatar Foundation
Doha, Qatar
Scopus ID 85201542366
PubMed ID 39160153
Erfassungsdatum 2024-09-03