Genetics-driven risk predictions leveraging the Mendelian randomization framework.
Genome Res. 34, 1276-1285 (2024)
Accurate predictive models of future disease onset are crucial for effective preventive healthcare, yet longitudinal data sets linking early risk factors to subsequent health outcomes are limited. To overcome this challenge, we introduce a novel framework, Predictive Risk modeling using Mendelian Randomization (PRiMeR), which utilizes genetic effects as supervisory signals to learn disease risk predictors without relying on longitudinal data. To do so, PRiMeR leverages risk factors and genetic data from a healthy cohort, along with results from genome-wide association studies of diseases of interest. After training, the learned predictor can be used to assess risk for new patients solely based on risk factors. We validate PRiMeR through comprehensive simulations and in future type 2 diabetes predictions in UK Biobank participants without diabetes, using follow-up onset labels for validation. Moreover, we apply PRiMeR to predict future Alzheimer's disease onset from brain imaging biomarkers and future Parkinson's disease onset from accelerometer-derived traits. Overall, with PRiMeR we offer a new perspective in predictive modeling, showing it is possible to learn risk predictors leveraging genetics rather than longitudinal data.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Alzheimers-disease; Association; Insulin; Variants; Resource; Amygdala; Biobank; Tool
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2024
Prepublished im Jahr
0
HGF-Berichtsjahr
2024
ISSN (print) / ISBN
1088-9051
e-ISSN
1549-5469
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 34,
Heft: 9,
Seiten: 1276-1285
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Cold Spring Harbor Laboratory Press
Verlagsort
1 Bungtown Rd, Cold Spring Harbor, Ny 11724 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of AI for Health (AIH)
Helmholtz Pioneer Campus (HPC)
POF Topic(s)
30205 - Bioengineering and Digital Health
30201 - Metabolic Health
Forschungsfeld(er)
Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e)
G-540004-001
G-540008-001
G-510002-001
Förderungen
Friedrich-Alexander-Universitaet Erlangen-Nuernberg
Free State of Bavaria's Hightech Agenda through the Institute of AI for Health (AIH)
Copyright
Erfassungsdatum
2024-10-30