PuSH - Publikationsserver des Helmholtz Zentrums München

Sui, J.* ; Xiao, H.* ; Mbaekwe, U.* ; Ting, N.C.* ; Murday, K.* ; Hu, Q.* ; Gregory, A.D.* ; Kapellos, T. ; Yildirim, A.Ö. ; Königshoff, M.* ; Zhang, Y.* ; Sciurba, F.C.* ; Das, J.* ; Kliment, C.R.*

Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD.

JCI insight 9:e180239 (2024)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation with smoke exposure being a major risk factor. To define novel biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single cell-RNA sequencing data from the gold standard mouse smoke exposure model to identify significant latent factors (context-specific co-expression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and novel biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from COPD patients, and smoke exposure resulted in enhanced GSN release from airway cells from COPD patients. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provide a novel analytical platform for other diseases.
Impact Factor
Scopus SNIP
Altmetric
6.300
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Copd ; Cell Biology ; Cytoskeleton ; Pulmonology
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2379-3708
e-ISSN 2379-3708
Zeitschrift JCI insight
Quellenangaben Band: 9, Heft: 21, Seiten: , Artikelnummer: e180239 Supplement: ,
Verlag Clarivate
Verlagsort Ann Arbor, Michigan
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Lung Research
PSP-Element(e) G-501600-004
G-505000-007
Scopus ID 85208772969
PubMed ID 39352744
Erfassungsdatum 2024-10-31