PuSH - Publikationsserver des Helmholtz Zentrums München

Schlieper, P.* ; Dombrowski, M.* ; Nguyen, A.* ; Zanca, D.* ; Eskofier, B.M.

Data-centric benchmarking of neural network architectures for the univariate time series forecasting task.

Forecasting 6, 718-747 (2024)
Verlagsversion DOI
Open Access Gold
Creative Commons Lizenzvertrag
Time series forecasting has witnessed a rapid proliferation of novel neural network approaches in recent times. However, performances in terms of benchmarking results are generally not consistent, and it is complicated to determine in which cases one approach fits better than another. Therefore, we propose adopting a data-centric perspective for benchmarking neural network architectures on time series forecasting by generating ad hoc synthetic datasets. In particular, we combine sinusoidal functions to synthesize univariate time series data for multi-input-multi-output prediction tasks. We compare the most popular architectures for time series, namely long short-term memory (LSTM) networks, convolutional neural networks (CNNs), and transformers, and directly connect their performance with different controlled data characteristics, such as the sequence length, noise and frequency, and delay length. Our findings suggest that transformers are the best architecture for dealing with different delay lengths. In contrast, for different noise and frequency levels and different sequence lengths, LSTM is the best-performing architecture by a significant amount. Based on our insights, we derive recommendations which allow machine learning (ML) practitioners to decide which architecture to apply, given the dataset’s characteristics.
Impact Factor
Scopus SNIP
Altmetric
2.300
0.830
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data Synthesis ; Deep Learning ; Model Selection ; Neural Networks ; Time Series ; Univariate Forecasting
Sprache englisch
Veröffentlichungsjahr 2024
HGF-Berichtsjahr 2024
ISSN (print) / ISBN 2571-9394
e-ISSN 2571-9394
Zeitschrift Forecasting
Quellenangaben Band: 6, Heft: 3, Seiten: 718-747 Artikelnummer: , Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
Institut(e) Institute of AI for Health (AIH)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-540008-001
Scopus ID 85205076400
Erfassungsdatum 2024-10-04