Leveraging prior knowledge to infer gene regulatory networks from single-cell RNA-sequencing data.
Mol. Syst. Biol. 21, 214-230 (2025)
Many studies have used single-cell RNA sequencing (scRNA-seq) to infer gene regulatory networks (GRNs), which are crucial for understanding complex cellular regulation. However, the inherent noise and sparsity of scRNA-seq data present significant challenges to accurate GRN inference. This review explores one promising approach that has been proposed to address these challenges: integrating prior knowledge into the inference process to enhance the reliability of the inferred networks. We categorize common types of prior knowledge, such as experimental data and curated databases, and discuss methods for representing priors, particularly through graph structures. In addition, we classify recent GRN inference algorithms based on their ability to incorporate these priors and assess their performance in different contexts. Finally, we propose a standardized benchmarking framework to evaluate algorithms more fairly, ensuring biologically meaningful comparisons. This review provides guidance for researchers selecting GRN inference methods and offers insights for developers looking to improve current approaches and foster innovation in the field.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Gene Regulatory Network Inference ; Graph Learning ; Prior Knowledge ; Single-cell Multiomics ; Single-cell Transcriptomics; Accessibility; Chromatin; Mouse
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
1744-4292
e-ISSN
1744-4292
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 21,
Heft: 3,
Seiten: 214-230
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
EMBO Press
Verlagsort
Campus, 4 Crinan St, London, N1 9xw, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30204 - Cell Programming and Repair
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Stem Cell and Neuroscience
Enabling and Novel Technologies
Helmholtz Diabetes Center
PSP-Element(e)
G-506290-001
G-506200-001
G-503800-001
G-553500-001
G-502800-001
Förderungen
DZHK partner site project
Helmholtz Association under the joint research school "Munich School for Data Science
Joachim Herz Stiftung Add-on Fellowship for Interdisciplinary Life Science
Helmholtz Association
Deutsche Forschungsgemeinschaft
Chan Zuckerberg Foundation
Helmholtz Association ((sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic))
Copyright
Erfassungsdatum
2025-04-08