Han, S. ; Yu, S. ; Shi, M. ; Harada, M. ; Ge, J. ; Lin, J. ; Prehn, C. ; Petrera, A. ; Li, Y.* ; Sam, F.* ; Matullo, G.* ; Adamski, J. ; Suhre, K.* ; Gieger, C. ; Hauck, S.M. ; Herder, C.* ; Roden, M.* ; Casale, F.P. ; Cai, N. ; Peters, A. ; Wang-Sattler, R.
LEOPARD: Missing view completion for multi-timepoint omics data via representation disentanglement and temporal knowledge transfer.
Nat. Commun. 16:3278 (2025)
Longitudinal multi-view omics data offer unique insights into the temporal dynamics of individual-level physiology, which provides opportunities to advance personalized healthcare. However, the common occurrence of incomplete views makes extrapolation tasks difficult, and there is a lack of tailored methods for this critical issue. Here, we introduce LEOPARD, an innovative approach specifically designed to complete missing views in multi-timepoint omics data. By disentangling longitudinal omics data into content and temporal representations, LEOPARD transfers the temporal knowledge to the omics-specific content, thereby completing missing views. The effectiveness of LEOPARD is validated on four real-world omics datasets constructed with data from the MGH COVID study and the KORA cohort, spanning periods from 3 days to 14 years. Compared to conventional imputation methods, such as missForest, PMM, GLMM, and cGAN, LEOPARD yields the most robust results across the benchmark datasets. LEOPARD-imputed data also achieve the highest agreement with observed data in our analyses for age-associated metabolites detection, estimated glomerular filtration rate-associated proteins identification, and chronic kidney disease prediction. Our work takes the first step toward a generalized treatment of missing views in longitudinal omics data, enabling comprehensive exploration of temporal dynamics and providing valuable insights into personalized healthcare.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2025
Prepublished im Jahr
0
HGF-Berichtsjahr
2025
ISSN (print) / ISBN
2041-1723
e-ISSN
2041-1723
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 16,
Heft: 1,
Seiten: ,
Artikelnummer: 3278
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30202 - Environmental Health
30505 - New Technologies for Biomedical Discoveries
30203 - Molecular Targets and Therapies
30201 - Metabolic Health
Forschungsfeld(er)
Genetics and Epidemiology
Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e)
G-506700-001
G-504000-002
A-630710-001
A-630700-001
G-500600-001
G-504091-004
G-505700-001
G-540004-001
G-510007-001
G-504000-010
Förderungen
Qatar National Research Fund (QNRF)
European Union
European Federation of Pharmaceutical Industries and Associations (EFPIA)
German Federal Ministry of Health (Berlin, Germany)
Ministry of Science and Culture in North-Rhine Westphalia (Dusseldorf, Germany)
German Federal Ministry of Education and Research
Helmholtz Zentrum Munchen - German Research Center for Environmental Health - German Federal Ministry of Education and Research (BMBF)
State of Bavaria
Biomedical Research Program at Weill Cornell Medicine in Qatar
Qatar Foundation
Innovative Medicines Initiative 2 Joint Undertaking (JU)
Copyright
Erfassungsdatum
2025-04-14