PuSH - Publikationsserver des Helmholtz Zentrums München

Olayo-Alarcon, R. ; Amstalden, M.K.* ; Zannoni, A.* ; Bajramovic, M. ; Sharma, C.M.* ; Brochado, A.R.* ; Rezaei, M.* ; Müller, C.L.

Pre-trained molecular representations enable antimicrobial discovery.

Nat. Commun. 16:3420 (2025)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
The rise in antimicrobial resistance poses a worldwide threat, reducing the efficacy of common antibiotics. Determining the antimicrobial activity of new chemical compounds through experimental methods remains time-consuming and costly. While compound-centric deep learning models promise to accelerate this search and prioritization process, current strategies require large amounts of custom training data. Here, we introduce a lightweight computational strategy for antimicrobial discovery that builds on MolE (Molecular representation through redundancy reduced Embedding), a self-supervised deep learning framework that leverages unlabeled chemical structures to learn task-independent molecular representations. By combining MolE representation learning with available, experimentally validated compound-bacteria activity data, we design a general predictive model that enables assessing compounds with respect to their antimicrobial potential. Our model correctly identifies recent growth-inhibitory compounds that are structurally distinct from current antibiotics. Using this approach, we discover de novo, and experimentally confirm, three human-targeted drugs as growth inhibitors of Staphylococcus aureus. This framework offers a viable, cost-effective strategy to accelerate antibiotic discovery.
Impact Factor
Scopus SNIP
Altmetric
15.700
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Drugs
Sprache englisch
Veröffentlichungsjahr 2025
HGF-Berichtsjahr 2025
ISSN (print) / ISBN 2041-1723
e-ISSN 2041-1723
Zeitschrift Nature Communications
Quellenangaben Band: 16, Heft: 1, Seiten: , Artikelnummer: 3420 Supplement: ,
Verlag Nature Publishing Group
Verlagsort London
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Förderungen Bavarian State Ministry of Science and Arts, Germany
This work was funded by a grant for the "StressRegNet" consortium within the Bavarian research network bayresq.net funded through the Bavarian State Ministry of Science and Arts, Germany
Scopus ID 105002965389
PubMed ID 40210659
Erfassungsdatum 2025-05-10